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ABSTRACT

MATHEMATICAL MODELING OF DISPERSION IN STRATIFIED WATERS

by

GEORGE C. CHRISTODOULOU

JEROME J. CONNQR

and

BRYAN R. PEARCE

A numerical model is developed for the quantitative description
of the dispersion process in a two-layer system which represents an
approximation for a natural water body during the summer season,
when a distinct thermocline usually exists. The model can handle
any passive constituent, dissolved or suspended, possessing  small!
vertical mobility and arbitrary decay characteristics, in a domain
of irregular geometry and bottom topography. The formulation is
based on the convection-diffusion equation, vertically integrated
between the layer boundaries. Layer velocities and thicknesses
are assumed to be obtained from a separate hydrodynamic model. The
processes of entrainment and mixing through the density interface
are presented with a unified view and general quantitative expressions
in terms of the stability of the system and the mean flow character-
istics are proposed. The modeling of horizontal dispersion mechan-
isms and the relation of eddy diffusivity to the characteristic grid
size and of shear dispersion to the local velocity profile are
discussed.

The finite element method is chosen for numerical implementation
because of its great flexibility in grid layout and easier handling
of spatial or temporal variability. Triangular elements with linear
interpolation functions are used for the spatial discretization,
while a simple implicit iterative scheme based on the trapezoidal
rule is employed for time integration. The method is shown to be
unconditionally stable for an arbitrary grid for both one- and two-
layer problems, in the case of no iteration and constant parameters.
General convergence criteria required by the iteration procedure
are developed and expressed in terms of the basic parameters of the
problem and are also confirmed by numerical experiments. The
accuracy of the computational scheme is investigated on a regular
grid. It is found to be satisfactory with respect to numerical
amplitude and phase errors; a criterion is presented for avoiding
spatial oscillations caused by the approximation of steep
concentration gradients.



Analytical solutions are derived for one- and two-dimensional
counterflow conditions and are subsequently used for verification
purposes. The sensitivity of the phenomenon to the intensity of
interfacial mixing and other parameters is studied and is found to
vary in different classes of problems. Lastly, the numerical model
is applied to two particle dispersion experiments carried out
recently in the Massachusetts Bay and comparisons with field measure-
ments are presented.



AUTHORS

George C. Christodoulou, Ph.D. candidate, Department of
Civil Engineering

Jerome J. Connor, professor, Depar trnent of Civil Engineer ing
Bryan R. Pearce, assistant pr ofessor, Department of Civil
Engineering

ACKNOWLEDGEMENTS

This two-volume report is the text of a Ph,D. thesis describing
the results of research done under the auspices of the M.I.T.
Sea Grant Program with support from the Office of Sea Grant in
the National Oceanic and Atmospheric Administration, U.S.
Department of Commerce, through grant number 04-5-158-1; and
from the Massachusetts institute of Technology; and from
the Ralph M. Parsons Laboratory for tJater Resources and Hydro-
dynamics, Department of Civil Engineering, Massachusetts
Institute of Technology.

RELATED REPORTS

Devanney, John W., III, et al. PRIMARY PHYSICAL IMPACTS OF OFF-
SHORE PETROLEUM DEVELOPMENTS; REPORT TO COUNCII ON ENVIRONMENTAL
QUALITY, MITSG 74-20; NTIS COM-74-112$/AS. Cambridge: M.I.T.
Sea Grant Program, 1974. 432 pp.

Moore, Stephen F., et al. POTENTIAL BIOLOGICAL EFFECTS OF
HYPOTHETZCAL OIL DISCHARGES IN THE ATLANTIC COAST AND GULF OF
ALASKA. MITSG 74-19; NTIS COM-74-11089/AS. Cambridge:
M.Z.T. Sea Grant Program, 1974. 121 pp.

Moore, Stephen F., Robert L. Dwyer, and Ar thur M. Katz. A
PRELIMINARY ASSESSMEJ'JT OF THE ENVIRO>RENTAL VULNERABILITY OF
MACHIAS BAY MAINE, TO OIL SUPERTANKERS. MlTSG 73-6; NTIS
COM-73-1056JJ. Cambridge: M. I. T. Sea Grant Program, 1973.
162 pp.

Robbins, Phillips W. STUDFNT PROJECTS ON THF. OXIDATION BY MARINE
BACTERIA OF AROMATIC COMPOUNDS FOUND Il'J OIL. MITSG 71-10;
NTIS COM-71-00878. Cambridge: M.I.T. Sea Grant Program, 1971.
55 pp.

NOTE: The preceding publications may be ordered from the
National Technical Information Service, U.S. Department of
Commerce, Spring f ield, Virginia, 22151. Use the NTIS number'
when ordering; prices are variable.



TABLE OF CONTENTS

~Pa e

. Title Page

Abstract

Acknowledgments

Table of Contents

List of Figures

List of Tables

List of Symbols

Chapter l Introduction

Chapter 2 Model Formulation

12

13

19

26

2. 1 Integrated Governing Equations

2. 2 Applicability, Limitations and
Extensions of the Formula tion

36

38
2. 3 Boundary Conditions

Chapter 3 The Dispersion Process in a Layer 42

42

45

57

68

73
Chapter 4 Interfacial Transport

734.1 Description of the Phenomenon

4.2 Review of Related Work

4.3 Generalizations and Conclusions

79

90

3.1 Mechanisms of Dispersion

3.2 The Horizontal Eddy Diffusion Coefficient

3.3 The Shear Dispersion Coefficients

3.4 The Vertical Diffusion Coefficient



~Pa e

Chapter 5 Analytical Solutions 94

965.1 1-D Instantaneous Injection

5.2 1-D Continuous Injection 106

1145.3 2-D Continuous Injection

Chapter 6 Sensitivity Analysis 121

1226.1 One-Di~nsional One-Layer Flow

6.1.1 Instantaneous Source

6.1.2 Continuous Source

6.2 Two-Dimensional One-Layer Flow

6.2.1 Instantaneous Source

6.2.2 Continuous .Source

6.3 Two-Layer Flow

6.3.1 1-D Instantaneous Source

6.3.2 1 � D Continuous Source

122

126

133

133

137

144

144

146

1486.3.3 2-D Continuous Source

154Chapter 7 The Finite Element Formulation

7.1 The Weak Form
154

1587.2 The Finite Element Approximation

7.3 Time Integration Strategy 170

174Chapter 8 Stability and Accuracy of the Numerical
Scheme

8.1 Background from Finite Difference
Nethods

176

8.2 Analysis of a Regular Finite Element Grid 183



Paape

1838.2.1 Stability

8.2.2 Amplitude Errors

8.2.3 Phase Errors

8.2.4 Spatial Oscillations

190

192

1988.3 Matrix Analysis for an Arbitrary Grid

8.3.1 Time Integration Stability

8.3.2 Iteration Convergence

198

204

2168.5 Experimental Results

8.6 Stability of Two-Layer Model 225

234Chapter 9 Verification and Applications

9.1 1-D Verification Studies 236

2419.2 2-D Verification Studies

2449.3 Application to the NOMES Experiment

9.3.1 The Experiment

9.3.2 The Flow Field

9.3.3 Dispersion Results

9.4 Application to the MIT Experiment

244

247

260

279

2799.4.1 The Experiment

9.4.2 The Flow Field

9.4.3 Dispersion Results

281

282

288
9.5 Discussion of Results

298
Chapter 10 Conclusions

References 301

8.4 An Approximate Criterion for the Time Step



LIST OF FIGURES

Title

The Two-Layer Idealization

~Pa e

27
2.1

Dependence of the Horizontal Diffusion
Coefficient on the Scale of the
Phenomenon �8!

3.1

48

pkubo's Diffusion Data �5! and 4/3 Power Lines 48
3.2

Length Scale for Sub-grid Scale Eddy
Diffusivity

3.3

Velocity Components in Two Coordinate
Sys terna

3.4 55

Comparison of Expressions for the
Horizontal Eddy Diffusivity

3.5 56

77
4.1 Schematization of Interfacial Transport

4.2 Experimental Results of Lofquist,
Replotted in   7 !

77

4.3 Experimental Results of Kato and
Phillips �5!

83

83Experimental Results of Moore and Long �2!

Flow Field Assumed for Analytical Solutions

Mass 3alance at the Location of the Source

4.4

95
5.1

95
5.2

Concentration Distributions in 2-D Counter-
flow Case

5.3 116

Typical Distribution after an Instantaneous
Injection in 1-D Flow

6.1

Typical Steady State Distribution for a
Continuous Source in l-D Flaw

6.2 129

Sensitivity Curves for 1-D Continuous
Source

6.3 132

Typical Distribution after an Instantaneous
Injection in a 2-D Domain

6. 4.



~Pa eTitle

Typical Steady State Distribution for
a Continuous Source in a 2-D Domain

6 ' 5 138

Sensitivity Curves for 2-D Continuous
Source

6.6 141

Sensitivity Curves for a Continuous Source
in a 2-Layer 1-D Counterflow

6.7

6.8 Sensitivity Curves for a Continuous Source
in a 2- Layer 2-D Counterflow 149

Solution Field and Boundary Conditions 1557.1

159Local Element Coordinate System

Local Boundary Segment Coordinate System

Example of a Regular Grid

7.2

159
7.3

185
8.1

8.2 Definition of Angles for an Arbitrary
Triangle 185

Comparison of Theoretical Bounds on the
Time Step with 1-D Runs

8.3
218

220
8.4 One-Dimensional Finite Element Test Grid

Two-Dimensional Finite Element Test Grid 220
8.5

222
8.6 Comparison of Theoretical Bounds on the

Time Step with 2-D Runs

Comparison of Different Loading Strategies
in a 2-D Grid 224

8,7

1-D Distribution at t=10 sec. after an
Instantaneous Injection

9.1 238

2401-D Steady State Distribution9.2

2422 � D Steady State Distribution along the
x-axis

9.3

2-D Steady State Profiles Normal to
x-axis

9.4
243



~Pa eTitle

Massachusetts Bay Finite Kle~nt Grid
and Location of the HOMES Experiment

9.5
246

253Interface Motion in FTB Run9.6

Comparison of Predicted Velocities at St. 5 254

Current Data at St. 5 and FTB Model Resu1ts

9.7

9.8

257Flow Field at Flood Tide for FTB Run

Flow Field at Ebb Tide for FTB Run

Seven-Day Particle Paths for FTB Run

Flow Field at Flood Tide for HTB Run

Flow Field at Ebb Tide for HTB Run

Seven-Day Particle Paths for HTB Run

Experimental Data at Day D+2 �4!

Experimental Data at Day D+3 �4!

Surface Measurements at Day D+7 �4!

Model Results for FTB Run at Day D+2

Model Results for FTB Run at Day D+3

Model Results for FTB Run at Day D+7

9.9

258
9.10

259
9.11

261
9 ' 12

262
9.13

263
9.14

265
9.15

266
9.16

267
9.17

269
9.18

270
9.19

271
9.20

273Model Results for HTB Run at Day D+2
 Release at Low Water!

9.21

Model Results for HTB Run at Day D+3
 Release at Low Water!

9.22 274

Model Results for HTB Run at Day D+7
 Release at Low Water!

9.23 275

Model Results for HTB Run at Day D+2
 Release at Ebb Tide!

9. 24 276

-10-



~Pa eTitle

Model Results for HTB Run at Day D+3
 Release at Ebb Tide!

9.25
277

Model Results for HTB Run at Day D+7
 Release at Ebb Tide!

9. 26
278

280Location of the NIT Experiment

Velocity Comparison at St. BE

Experimental Results at Day D+1

Experimental Results at Day D+2

Experimental Results at Day D+3

9.27

2839.28

2849.29

2859. 30

2869. 31

289Computed Concentrations at Day D+1
 Large Tidal Tilt!

9. 32

Computed Concentrations at Day D+2
 Large Tidal Tilt!

9. 33
290

Computed Concentrations at Day D+3
 Large Tidal Tilt!

9.34
291

Computed Concentrations at Day D+1
 Small Tidal Tilt!

9. 35
292

Computed Concentrations at Day D+3
 Small Tidal Tilt!

9 ~ 36
293

Computed Concentrations at Day D+3
 Small Tidal Tilt!

9.37
294



LIST OF TABLES

TitleTable ~Pa e

Constants of 4/3 Power Law Fitted to
Individual Sets of Data of Figure 3.2

3.1
49

Constants A in Shear Dispersion
Coe f f i cient Express fons  Eqs. 3. 22!

3.2
67

Parameter Sensitivity for 1-D Instantaneous
Injection

6.1
124

6.2 Parameter Sensitivity for 1-D Continuous
Source 129

Parameter Sensitivity for 2-D Instantaneous
Injection

6.3
134

Parameter Sensitivity for 2-9 Continuous
Source

6.4
138

6.5

Amplitude Error aft'er lGO Time Steps,
for Uht/hs = 0.1

8.1
188

191Phase Error e/kurt, for E 0

Phase Error 9/kit, for Mt/hs = O.l

8.2

192
8.3

Definition of Symbols Used in Figures
8.3 and 8.6

8.4
219

237Parameters Used in Verification Studies9.1

Summary of Circulation Runs for the
NONES Application

9.2

-12-

Parameter Sensitivity in Two-Layer Systems 152



LIST OP SYMBOLS

element constants  g = 1,2,3!

amplification matrices

scalars

local concentration

a, b.

a s'k

a p a
s ss

average concentration over layer thickness

spatial deviation from c

interfacial friction factor

scalar

rate of energy input  dissipation!, also
turbulent kinetic energy

functionsfl, f2
acceleration of gravity

total water depth

interface elevation

bottom elevation-h
2

space discretization indices

decay rate, also von-Karman constant

wavenumberk, k, kx' y

source input per unit time, also scalar

one-way interfacial transport rates

time discretization index

12' 2l

-13-

length scale for diffusion, also for interfacial
transpor t



internal source/sink term, per unit volume

turbulent diffusion fluxes

qb
diffusive flux through surface and bottom,
respectively

diffusive flux through interface

radius of pluae

roots of characteristic equations

Laplace transform variables

rl 12 r3 r~

s, y

time

local velocity components

average velocities over layer thickness

spatial deviations from u, v

shear velocity

entrainment velocity

settling velocity

Cartesian coordinates

Uq v~ w

Uq V

T1 11

W
e

W
S

x, y, z

area

Al' A2' A3j A~ constants

advection matrix

symmetric and skew-symmetric part of A

matrix

A, A
S -SS

layer-integrated concentration

trial solution

prescribed concentration as boundary condition

true solution



numerical solution

C
0

E, E, Ex' y'
E, E, Exx' yy ' xy

dispersion coefficients

interfacial transport matrices

boundary force vector

matrices

layer depth

dispersion matrix

length scale for diffusion

relative and absolute length of plume

amount of instantaneous load, also a large value

total masses in layers 1, 2

geometrical matrix

element expansion vector

F E*

b

Fl' F2~ G

L, Lr' a

Ml, M2

M

N

term including sources, decay and interfacial
trans fer

gain  or loss! through top and bottom boundary
of a layer, respectively

p, p
s

overall forcing vector

P-F

Peclet number

total dispersive fluxesQ ~ Q

-15-

initial wave amplitude

specified concentration defining the edge of plurne

layer-integrated decay term

decay matrix



4 q"

R, Rr' a

Ri, Ri*
0 0

source vector

concentration. and flux specified boundary segment,
respectively

S i Sc' q

tidal period

time scale for mixing

initial time for mixing

coordinate transformation matrix

T
C

velocity magnitude, also velocity scale for
interfacial transport

shear velocity

weighting function, also width of plum

matrix

proportionality factor for interfacial diffusion

a/H

percentage used in defining relative plume
boundary

defined in Equation  8.19!Bs r. 6

C > C
turbulent diffusion coefficients

C g 6
2

scalar

-16-

dispersive flux normal to boundary and prescribed value

overall interfacial transport

layer integrated source term, also residual

relative and absolute radius of plume

matrix

Reynolds number

overall Richardson numbers



2

variable

matri.ces

density difference between the layers

velocity difference between the layers

grid size

time step

8U

Subscri ts

peak value, or value at origin

layer 1

layer 2

space discretization index

time discretization indexnor t

-17-

surface elevation

phase of ~, also angle of coordinate rotation

angles of triangular element  g = 1,2,3!

molecular diffusivity, also scalar

complex amplification factors

proportionality constants

kinematic viscosity

local element coordinates  j = 1,2,3!

density, also modulus of

variance

angles defined in Figure 8.2

vector



x, t, z
components along the coordinate directions

matrix quantity

boundary quantity

shear dispersion quantity

element quantity

iteration index

time discretization index

transpose of matrix

layer average value

turbulent fluctuation

time derivative



CHAPTER 1

INTRODUCTION

Coastal areas have traditionally been centers of urban and industrial

growth. In addition to the convenience of sea transportation, a basic

reason for their attractiveness had been the seemingly infinite capacity

of the nearby water to receive all kinds of unwanted effluents. In recent

years, however, the rapidly increasing quantities of such effluents� snd

the developing trend for exploration of coastal waters for oil, mineral

deposits and other resources, coupled with the growing concern over conser-

vation of environmental quality has led to t' he necessity for rational

planning of the coastal zone utilization instead of allowing

uncontrolled expansion.

A major technical problem associated with such planning strategies is

the prediction of how an effluent will spread in a given body of water.

The answer to this question is by no means simple. It involves knowledge

of the flow field on the one hand and the characteristics and possible

interactions of the pollutants on the other. The flow patterns in near

shore waters are usually extremely complex and depend on meteorological

conditions, bottom topography, boundary geometry, etc. To gain insight

into the processes that take place in nature, three approaches may be

followed:

 i! Direct measurements

 ii! Hydraulic modeling

 iii! Mathematical modeling

-19�



Neasurements in coastal waters are normally very expensive and mostly

site and time specific, so that by themselves they cannot provide an

adequate overall view of the processes of interest. However, they are

necessary in con]unction with models of categories  ii! and  iii!, since

they provide data required for input or for verification purposes.

Hydraulic models can yield a very detailed picture of the phenomena, but

considerable difficulties are encountered in the proper scaling of all

relevant factors, inevitably resulting in some degree of simplification of

the representation. They are in general site-specific and also are much

more expensive than mathematical models. This last category consists

essentially of the representation of the actual processes by mathematical

equations, which are subsequently solved by some sort of analytical or

numerical technique. The more complex the mathematical representation,

the more difficult, but supposedly the more accurate, the solution becomes.

Mathematical models are relatively inexpensive and general enough so that

they can be applied to different areas with only minor changes.

With the widespread use of high-speed computers, increasingly detailed

mathematical formulations can be handled by various numerical methods.

Initially, two-dimensional one-layer models, treating the flow field as

uniform over the depth, were developed to describe the transient circulation

patterns in near-shore waters. This approach is !ustified because of
the characteristic shallowness of coastal waters relative to their hori-

zontal dimensions and yields the simplest approximation to the actual flow

field. Finite difference techniques have been used for several years, but

lately finite element models, allowing greater flexibility in the represen-

tation of complex geometries, have emerged.

-20-



From a practical viewpoint, of main interest is not the flow field,

but rather the transport and dispersion of some substance due to a given

flow field. Therefore, the information obtained from a hydrodynamic model

is subsequently used as input to a transport model. The latter normally

solves some form of the convection-diffusion equation, expressing the mass

balance of the constituent of interest. Again, primarily finite dif ference

schemes have been used in the past and only recently have finite element

techniques been employed   2, 77, 44! .

During the winter season, a water body is generally well-mixed

through the depth. However, this is not the case during the summer. Due

mainly to increased heat input near the surface, a density stratification

begins to develop in the spring and by mid-summer a strong thermocline

exists and practically divides the water column into two distinct layers.

The dynamics of such a system cannot be adequately represented by a one-

layer approximation, as severe velocity differences, and even counter-flows,

may exist between the layers. The effect of stratification on the flow

pattern has been evaluated by means of two-layer analytical solutions for

oceans   87! and coastal waters � ! . In lakes, where the wind is the

primary forcing mechanism � as opposed to tide the vertical dimension has

been treated in more detail in both analytical �0! and numerical �5!

investigations, at the expense of eliminating one of the horizontal

dimensions. Severe simplifications of the geometry and of the governing

equations had to be introduced, understandably, in order to obtain

analytical results. To achieve a better description of both the vertical

structure and the horizontal variability of the flow in a natural water



body of arbitrary geometry and bottom topography, multi-layer or quasi-

three-dimensional numerical models were formulated �L, 72, 86! . Simul-

taneous with solving the hydrodynamic equations, one has to keep track of

density changes, as they may significantly affect the flow field. Therefore,

most multilayer circulation models are coupled with dispersion models

which describe the transport of heat and salt, on which the water density

depends. This implies that concentrations of heat and salt along open

boundaries have to be specified and gain or loss through the water surface

or through the boundaries has to be taken into account.

The development of large multilayer computer codes has recently been

initiated   l, 4j, 38, 72! . primary emphasis is being placed on improving

the computational techniques for solving the increasingly complex relevant

equations more efficiently and in software organization f' or easier use.

Little attention has been given so far to the proper choice of the values

of the parameters involved or the sensitivity of the solution to parameter

variations. As the number of parameters and the boundary conditions that

have to be specified increases with the number of Layers, model verifica-

tion becomes a very dif ficult and costly task. Extensive field data are

generally required for the proper application of multilayer models to a

give~ area, since, in the absence of realistic inputs  especially boundary

cond' tions!, the confidence in their results diminishes rapidly. So,

despite their gr at potential, the usefulness for predictive purposes

b ecomes doubt ful.

The question cf complexity of the. mathemat'c-l r=-presentatioa of the

1} J' a ! e u t:nd d-"a -e-�" -" c-t= i=- an per ar "ne

-22-



from a practical viewpoint. A less ambitious, two-layer model, while

still containing a small number of parameters, and requiring minimal "tuning",

provides a significantly different picture of the phenomena than its one-

layer counterpart and is quite appropriate under strong natural stratifica-

tion. The two-layer idealization is a natural one with the distinct

thermocline being almost a "material" interface, allowing little transfer

through it and lending itself to a clearer representation of the physical

processes of entrainment. By contrast, in a multilayer approach, the

layers are necessarily separated in an arbitrary way by imaginary  mostly

horizontal! interfaces. Of course, this is necessary when a strong thermo-

cline is absent and the change in density is more or less continuous from

the surface to the bottom.

The objective of this study is to investigate problems associated with

properly describing the dispersion of matter in a two-layer system. Trans-

port of constituents, notably water quality parameters, is being incorpor-

ated in the multilayer models mentioned above. However, the fundamental

physical behavior of dispersion in a layered system has not so far been

fully investigated. It is felt that this can be hest understood in the

simplest two-layer case, which therefore has to preceed a multilayer

approach. This work attempts to establish this behavior by studying first

the physical processes involved and developing simple analytical solutions

which identify the essential features of the problem, before proceeding to

the numerical aspects of the solution. Then, the details of the finite

element method are discussed and its stability requirements and accuracy

characteristics for this class of problems are established.

-23-



The numerical model is intended to describe the dispersion of an

arbitrary constituent, possessing in general vertical mobility, in a

two-layer coastal water body of variable bottom topography and boundary

geometry, under transient flaw conditions. This being primarily a study of

the dispersion phenomenon, the velocity field in both layers, as well as

their thicknesses, will be assumed known, presumably obtainable through a

separate hydrodynamic model. By uncoupling the hydrodynamic and dispersion

models, the same flow pattern can be used to investigate very economically

the spreading of several different substances and to experiment with

different source locations, loading strategies, parameter values etc.

However, this can only be done provided that the constituent of interest

does not affect significantly the flow field or the density structure.

After the mathematical formulation of the problem  Chapter 2!, the

nature of the dispersion coefficients is examined in detail  Chapter 3! .

The horizontal eddy diffusivity is related to the grid size of the finite

dif ference or finite element discretization, while the contribution of

vertical shear is handled through au extension of Taylor's method �6!

to two-dimensional flows. A brief discussion of the vertical diffusion

coefficient is made at the end of this chapter. Zn Chapter 4, the physical

mechanisms responsible for material trans fer between the layers are

examined. Through a literature review of theoretical and experimental

investigations, mos tly related to simple one-dimensional flows, quantita-

tive relations expressing the interfacial transport in terms of the mean

flow characteristics are proposed.

-24-



Analytical solutions for simple flow conditions are derived in

Chapter 5. These show some of the peculiarities of the dispersion process

in a two-layer system. The sensitivity of both one- and two-layer disper-

sion phenomena to changes in the parameters involved is examined in

Chapter 6. While this is done only for simple flow conditions for which

analytical solutions are available, the results are believed to hold to

some extent in more general cases as well.

The relatively new finite element method has been chosen for numerical

implementation, after its successful application in one-layer dispersion

models. The basic formulation along with a discussion of the solution

procedure is presented in Chapter 7. Approximate stability criteria

based on a simple theoretical examination of the finite element formulation

are developed in Chapter 8. The effect of the finite element discretiza-

tion on the accuracy of the solution is also investigated. Numerical

experiments are carried out to supplement and confirm the theoretical

results. Knowledge from analogous finite difference approximations is used

to some extent, since their stability requirements and other restrictions

have been studied extensively. Despite rapid developments in the applica-

tion of finite element methods to fluid problems, rigorous theoretical

stability analysis has not yet succeeded in yielding practical results,

Verification of the numerical scheme against the analytical solutions

presented in Chapter 5 is performed in the last chapter. Finally, applica-

tions to Massachusetts Bay serve partly as further verification of the

model by comparison to large scale field experiments and partly as

examples of its applicability to "real world" problems.

-25-



CHAPTER 2

MODEL FORMULATION

2.1 Inte rated Governing Equations

The mass balance of a constituent introduced in a water body

is expressed by the three-dimensional convection-diffusion equation

which, for negligible density changes either in the ambient conditions

or due ta the inclusion of the constituent, has the form

� = - �  u c + q ! � �  v c + q ! � �  w c + q ! + p � .1!Bc 3 3 3
Bt Bx c x 3y c y 3z c z

where

c is the local volumetric concentration

u , v , w are the constituent velocities in the x, y, z direc-
c c c

tions respectively

q , q , q are the diffusive fluxes in the x, y, z directions
x' y' z

p represents the generation or decay of the constituent per

unit volume.

To obtain the equations pertaining to a layered system,

integration of Equation �.1! between the layer boundaries is

required. In what follows, these equations are derived for the two-

layer case defined in Figure 2.1. The procedure is analogous for a

multi-layer formulation.

Using Leibnitz's rule one obtains for the top layer:

-26-



Figure 2.1 The Tvo-Layer Idealization
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3 ~TT 1 3 3
3t

cdz-[c ~] -[c � ] � � {u c+q !dz- �  v c+q !dz +
Bt rl Bt -h 3x c x By c y

1 "1 1

+ pd.z-[w c+q - u cd ! � - v c+! � ] +BQ

c z c x Bx c y By q
1

Bh Bh

+[w c+q + u c+q ! � + v c+q ! ]c z c x Bx c y By -h
1

which, after rearranging, results in:

3 cdz = � �  u c+q !dz � �  v c+q !dz + pdz +3 3
Bt � ax c x By c y

1 hl 1 1

+[c  +u � +v � -w!+ q +q � q !] +ar av Bv Bn Bn
Bt c Bx c By c x Bx y By z rl

Bh Bh Bh Bh Bh
+[c  � + u � + v � + w !+ q � + q � + q ! ]3t c Bx c By c x Bx y By z -h

�.2!

This form expresses the time rate of change of the constituent mass

within a control volume of length dx, width dy and bounded by the

lines z = -h and z = q. The first two terms in the right hand side
l

represent the advective and diffusive fluxes through the sides, the

third term represents the generation or decay of material within the

control volume and the last two terms define the exchange through

the top and bottom boundaries, which are, in general, moving.

Normally, the horizontal velocity of the constituent is con-

sidered equal to the local water velocity, i.e., u = u and v = v.c c

However, unless the material is neutrally buoyant, this will not

hold for the vertical component. By introducing the  positive



downwards! settling velocity w , and noting w = w � w , the
s c s

bracketed terms in Equation �.2! can be written as

P =[c ~ + u + v � ~ !- q -q � � � !] =Qn QTT Bn 3q Bv
Bt Bx By s z » B» By

[c ~~! -q ]~D Dt s sg

Bh Bh Bh Bh Bh,
1P =[c  � + u � + v � + w-w ! +  q + q � + a � ! 1b Bt Bx By s z x Bx y By -hl

Dh

= [c  � + w-wJ � q j
1

where q and q are the diffusive fluxes normal to the free surface
s

and interface respectively, per unit projected area on the

horizontal plane, and are considered positive when outward from

the layer. The kinematic condition at the free surface requires

[ � -w] =0Dq

Dt rl

and consequently

�. 3!P =cw q
8 g 8 8

This term represents the gain  or loss! of material from the

atmosphere and in most cases vanishes. The interface, defined as

the position of steepest density gradient, is not necessarily a

material surface. Tts location is given by

z = � h  x,y,t!
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The position of a particle in the neighborhood of the interface can be



expressed in terms of the boundary and a deviation hz, i.e.,

z=-h +az
l

Then,

Dz l Dgz
w +

Dt Dt Dt

or
Dh

tw+ jh =w
l

�.4!

The relative vertical velocity, w , of the water particles withe'

respect to the layer boundary will be referred to herein as

"entrainment" velocity and, by convention, it will be considered

positive when directed upwards. Since w > 0 implies > 0 andDh,z

e Dt

the latter indicates that the water particle moves upward relative

to the boundary, it follows that a positive entrainment velocity is

associated with a net water motion from the bottom to the top layer.

We may now write

P =c  w � w! -qbl -hl e s i

Equation �.5! shows that settling counteracts entrainment. In

the case of a neutrally buoyant contaminant  w = 0! the top layer
s

becomes zero when w = w and changes to a loss when w > w . Thes e s e'

latter case simply indicates that the downward settling rate of the

particles relative to the water is faster than the upward rate of

advance of the water through the interface.
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would gain material through the interface at a rate w c , providede -h
l

w > 0. This gain is reduced for settling particles and actually
e



The concept of entrainment is quite familiar in the field of

fluid mechanics. It is usually associated with a relativeLy fast

moving or highly turbulent layer  e.g. jet! that draws some mass from

the adjacent ambient  and usually quiescent! fluid. In large water

bodies, such as lakes or oceans, the term entrainment commonly

refers to "erosion" of the quiescent bottom Layer by the top layer

moving under the influence of the wind or other driving mechanism.

In coastal waters both layers are quite turbulent and possess

velocities of the same order of magnitude. Therefore, there should

be exchange of water mass both ways through the interface, and w
e

will represent only the net result of this exchange. Viewing the

concentration as continuous over the whole depth  Figure 2.1!, but,

assuming that the transi,tion zone between the layers is very narrow�

consistent with the two layer idealization of the system � It is

reasonable to approximate the concentration at the interface by the

average of the concentrations of the adjacent layers. Therefore,

we set

l 2

-h 2
1

in Equation �.5!. This becomes more "exact" as the concentration

gradient increases, approaching a discontinuity at the interface.

The other component, q , of the interfacial transport is a diffusive

flux and is generaLly expressed in terms of the difference in

concentration between the layers, i.e.,

q a  c c2!

where m may depend on flow parameters and the concentration difference.
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A detailed discussion of the interfacial transport process follows

in Chapter 4.

With respect to the remaining terms of Equation �.2!, the

following notation is introduced:

C = cdz = H c

-h
1

�. S!

cl - cl+ cl

lt
1 1 1

�-9!

v] vl + vl

where the overbar denotes the average value over the layer and the

double prime the deviation from the average.

�.10!

where R represents the input or creation and D the decay of the

constituent within the layer, per unit pro]ected area.

In the simplest case of linear decay,

�.10a!9 =kC

where k denotes the decay rate.

Equation �. 2! is now writ ten as

BC1 B B � = B 92I II� + �  u C ! + �  v C ! = � �  q +u"c"!dz � �  q +v"c"!dz +
Bt Bx 1 1 By l 1 Bx x By y

1 1

r pdz R � 9
1 1

1

+Rl � D +P +P
1 1
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or

BC B � - B - B B� + �  u C !+ �  vC!=- � Q � � Q +P
Bt Bx 1 1 By 1 1 Bx x By y 1

�.11!

Bc Bc
q = � c � - E

x xx Bx xy By

Bc Bc
E

y yx Bx yy By

Integrating through the layer thickness, and taking into consideration
Bc Bc

the fact that � , � are constant over z:
Bx ' By

Bc Bc
q dz=H ~ � +~ !
x 1 xx Bx xy By

1
�. 12!

Bc Bc

y = 1 yx Bx yy Bydz=H � +c � !

1

where the overbars denote layer-average values. Under horizontally

isotropic conditions, c = c = c and c = e = G.
XX xy yx

By analogy, the horizontal transport terms associated with

vertical velocity variations are expressed by means of shear

dispersion coefficients, as follows:
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The horizontal turbulent diffusion fluxes q, q are usually

expressed in terms of the gradients of the layer-average concentration

and the turbulent diffusion coefficient, which in its most general form

is a second order symmetrical tensor:



B d Bc
U"G"dz H  E � + E � !1 xxl Bx xy By

1

�.13a!

B 1 d B
v"c"dz = H  E � + E !1 yxl Bx yyl By

1

�. 13b!

The horizontal dispersion processes in a layer will be examined in

Chapter 3.

En a similar way, by integrating Equation �.1! between the

bottom layer boundaries, we obtain:

+R -9 +P +P
s2

or

BC2 B 3 B� + �  u C !+ �  v C != � � Q - � Q + PB

Bt Bx 2 2 By 2 2 Bx x Bx y 2
�. 14!

where

Bh Bh Bh Bh Bh
P = � [c  � +u � + v � +ww!+ q+a +a !]s2 Bt Bx By s z -xBx y By -h 1

=-[c w � w! -q]e s i-h =-P
1 bl

�. 15!

-h

2 B B 1 B 1� + �  u C !+ �  v C ! � �  q +u"c"!dz � �  o +v"c"!dz +
Bt Bx 2 2 By 2 2 Bx x By yh2 h2



Bh, Bh ah Bh Bh

P =[c  � + u � + v � + w-w !+ q + q � + q !]
b2 Bt Bx By s z x Bx y By -h

2

Dh

[c  � +w-w! -q ]
Dt s b-n

2

The kinematic condition at the bottom requires

and the loss of material to the bottom reduces to

�.16!
b2 s -h b

2

This term may also be written as �4, ll!

�. 16a!

where

A = 1.0 for perfectly absorbing bottom

A 0.0 for perfectly reflecting bottom

In summary, the governing equations for the two layers are:

B � a � B
+  uC!+ �  vC!~ �  E H � +E H !+l 1

Bt Bx 1 1 By 1 1 Bx xx 1 Bx xy 1 By
1

1 2+  w-w! +a c2 � c ! � k Cl+
e s

�. 17a!
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Dt -n = 0
2

P = -Aw c
s -h "2

Bcl Bc
+ �  E H � + E H !+

By yx 1 Bx yy l By



BC Bc2 Bc2
� + �  uC!+ �  vC! = �  E H +E H � !+
Bt 3x 2 2 By 2 2 3x xx 2 Bx xy 2 By

3 Bc2 Bc

+ �  E H � +E H !
3y yx 2 Bx yx 2 3y

c + c
1 2

 w-w !
e 8 2

� > c � c! � Awc � RC +R
2 1 s 2 2 2

�. 17b!

where the turbulent diffusivities have been absorbed in the dispersion

coefficients and it was assumed that the concentrations are

approximately uniform within each layer. These expressions include

both integrated and average concentrations; by substituting C/H for

c, the latter can be eliminated. The layer-integrated concentration

is chosen here to be the solution variable, being more convenient

to work with in the integral form of the governing equations. In

addition, it is a more "natural" quantity when the vertical concen-

tration distribution over the layer is not uniform.

2.2 A licabilit Limitations and Extensions of the Formulation

The two-layer density stratification is a reasonable

approximation of natural conditions during the summer season in the

absence of severe weather phenomena. A temperature difference of

more than 10'C between the top and the bottom layer is quite common

in coastal areas such as the Massachusetts Bay �2!. In addition,

there is a difference in salinity between the layers, which is mere

than 1 ppt for the Bay   8 !. The combined effects of temperature
0and salinity imply a density difference of about 3 /oo between the
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layers. In the model the layer densities are assumed to be known

as functions of space and in the simplest case, to be constant.

Density variation is assumed to be treated by the hydrodynamical model

which is also used to provide necessary inputs of layer velocities and

thicknesses. It is well known �9! that the thermocline depth can

remain essentially fixed for substantial periods of time  of the

order of weeks! when a balance exists between surface heating and

mechanical energy input. The two-layer idealization of the system

is based on the assumption that such statistically steady-state

conditions exist for time intervals longer than the time scale

associated with the dispersion phenomena of interest.

The densities do not enter in the calculations except for

establishing the Richardson number upon which, as will be seen later,

the interfacial transport depends. However, the assumption of

prescribed densities seems to limit the applicability of the model to

dispersion of passive constituents, i.e., not affecting the density

structure. The most interesting non-passive pollutant is heat,

released from power plants in the sea. A temperature rise of 3 C over

the ambient, which is practically an upper limit on allowable heat

discharges, causes a density change of 0.6 /oo, which is of the0

order of 20%%u of the initial density stratification. For such small

density changes, the model can be still considered applicable.

The formulation in terms of the layer-integrated concentrations

treats, in general, the total quantity of material within the layer.

Certainly, the two-layer discretization is more appropriate when the
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concentrations, as well as the flow parameters, are approximately

uniform within each layer. This may be unrealistic in the case of

heat, for example, or suspended sediments but it seems reasonable

for neutrally buoyant constituents. The uniform distribution is the

simplest profile that can be chosen. A choice of a different profile

is permissible, provided that the assumption of self-similarity is

acceptable. The specific profile choice will affect the boundary

terms and, in addition, the dispersion and advection terms  ll!,

which have to be expressed in terms of the constituent mean velocities.

Such extensions do not present any conceptual difficulties.

Multilayer formulations may be evoked when more refined treat-

ment of flow and concentration variations over the depth is desired.

In this case the interfaces are not identified with density dis-

continuities. As coastal waters seldom exhibit a distinct stratifica-

tion other than in two-layers, multiple layers are almost purely

mathematical, aiming at a more detailed description of the phenomena

under consideration. Normally these layers are separated by arbitrary

horizontal surfaces that are fixed in time �l, 86, 72!. The

formulation presented in the previous section can be readily extended

to n layers.

2.3 Boundar Conditions

The boundary conditions along horizontal boundaries confining the

domain under consideration may be of two types, since the problem

involves second order spatial derivatives:
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 a! Concentration specified, in terms of either layer-average

or layer-integrated value

 b! Concentration gradient normal in the boundary specified,

or, alternatively, normal dispersive flux  Q ! specified.
n

The second kind of boundary condition is commonly used along land

boundaries, where the normal dispersive flux is set naturally to

zero  reflecting boundaries!. Ideally, there is no advection through

the land boundary, either. The velocity inputs have to be obtained

from a hydrodynamic model that allows no water mass transport through

the discretized boundary segments. This would imply that, if the

pollutant concentration is constant over a segment, there will be no

loss or gain of material through it. However, when the concentration

is not constant, mass conservation may, in general, be violated and

this has to be taken into consideration in the dispersion model.

Of major concern is the treatment of the ocean boundary. As

long as the plume remains well within the domain, the concentration may

be simply set and maintained at zero along that boundary. However,

when the plume, after some time, approaches the boundary, the zero

concentration cannot be imposed any more, since it will create an

unnatural barrier to the plume that would otherwise extend out of

the domain being modelled. The ideal solution to the problem would

be to make the grid as big as to be sure that the plume never reaches

the boundary. This is not usually possible in practice. Therefore

an "engineering" approach has to be taken. This depends on the

particular problem being solved and the !udgement of the modeler, but
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generally different boundary conditions are prescribed for inflows

and autflows.

In models of salinity intrusion in estuaries  l-D!, during ebb

tide the salinity gradient is specified at the boundary as equal to

that obtained from the neighboring interior zone; during flood tide the

salinity itself is prescribed at the boundary, starting with the value

acquired at the end of ebb and increasing up to the ocean salinity

following some postulated function, as discussed in   27 !. In a

2-D domain, there is not, in general, inflow or outflaw over the whole

ocean boundary at the same time. It is easy, hawever, ta keep track

of the velocities at the boundary to determine their direction at any

point and any time. Whenever there is outflow, in principle, the

concentration gradient should be specified, by analogy to the one-

dimensianal case. Whenever there is inflow, however, things are more

difficult. In general, the concentration should be specified, but this

will not only depend on the last outflow concentration at that point,

but essentially on the conditions and the mixing out of the boundary,

since in pollution problems there is no reference value, as was the

ocean salinity in the salinity intrusion problems. The presence of

decay further complicates the matter. As «ende«se states �2!

the specification of the boundary concentration depends an the

madeller's intuition and feeling of the mixing processes out of the

boundary.

A simpler procedure for outwards flow is to specify the gradient

as zero, allowing the material simply to advect through the boundary.
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The gradient near the boundary is small anyway, unless the source is

close by, in which case the boundary has probably to be moved

further out. The same boundary condition may be kept for a subsequent

inflow period provided its duration is substantially smaller than the

outflow period. This type of boundary condition, which essentially

assumes complete mixing in the neighborhood of the ocean boundary,

was tried in earlier applications of the one � layer aadel to

Massachusetts Bay   65! . The results are satisfactory provided the

plume reaches the boundary in a segment of predominantly outward flow,

which is usually the case. It must be noted that in the remaining

segment of the ocean boundary, far from the plume, the concentration

must be specified, normally at zero, to provide a reference value for

the computations in the interior. In a multilayer model, obviously

the boundary conditions have to be specified for each layer

separately.
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CHAPTER 3

THE DISPERSION PROCESS IN A LAYER

3.1 Mechanisms of Dis ersion

In this chapter the physical mechanisms causing horizontal spread-

ing of a constituent within a give~ "layer", neglecting the interaction

between the layers, will be examined. As evident from the convection-

diffusion equations  Section 2.1!, there are basically three processes

responsible for the dispersion of a substance in the context of a

horizontally two-dimensional flow field:

a! Advection, most importantly temporal or spatial variations of

the layer � averaged velocities; mathematically represented by

the advection terms in the equations.

b! Turbulent diffusion, that is, mixing due to small scale turbulent

velocity fluctuations; quantified by the turbulent  or eddy!

diffusivity, based on. the widely used analogy between turbulent

mixing and molecular diffusion. This hypothesis has proved very

convenient for studying diffusion problems, although it is not

necessarily correct, especially for transient problems   L4,5L!.

c! Dispersion due to vertical shear, that is, velocity nonuniformities

over the layer thickness. These variations create an additional

effective horizontal spreading in the 2-D concentration field.

Their contribution is represented by the shear dispersion coeffic-

ient, the concept of which is based again on the assumption of

analogy between shear dispersion and turbulent diffusion. The valid-

ity of this assumption will be discussed in Section 3.3.
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From the above it can be seen that the differentiation between

mechanisms and the introduction of diffusion and dispersion coefficients

is basically due to the simplified representation of the velocity

field. In a three dimensional description the shear effect would be

incorporated in the first mechanism. With respect to the relative

importance of processes  a! and  b!, normally the term advection is

associated with the large scale circulation, while diffusion refers to

smaller scale turbulent mixing. However, the separation point is not

always clear and generally depends on the level of detail in which the

advection process can be modeled. In fact, if only an overall "mean"

velocity is known over the whole area of interest, even large size

eddies that would otherwise be considered as part of the circulation

field have to be included somehow in the diffusion terms. It is clear

that in that case the magnitude of the diffusion coefficient should

increase, while at the same time the uncertainty in its estimate

would also increase. These parallel effects are always present when

the velocity field is simplified since a larger number of contributions

to mixing are lumped into a single "diffusion" coefficient. Therefore,

the need for a reasonably detailed description of the flow field is

obvious, since the turbulent diffusivity concept is an approximation

to the mixing phenomenon to begin with. On the other extreme, if the

velocity field is known in great detail, the scale of mixing represented

by the turbulent diffusivity is reduced and the contribution of the

corresponding term in the equation diminishes.

Let us consider the description of the diffusion of a cloud after
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an instantaneous injection in a two dimensionaL domain. At the be-

ginning, moderate size eddies contribute to the advection of the cloud

as a whole, while mixing takes place in very small scales. As the

size of the cloud increases over time, larger and larger eddies become

involved in the internal mixing of the cloud, while its center moves

under an even larger scale circulation. Consequently, the effective

diffusion coefficient increases with time  or size!. This behavior

has been studied in the past �6, 16! and relations between

diffusion coefficient and either cloud size or diffusion time have

been proposed. However, when the flow field is specified, e.g. by

a hydrodynamic model, at a certain spatial discretization, such con-

tinuous growth of the diffusion coefficient is not justified any more.

Once the cloud size increases beyond the level of discretization of

the finite difference or finite element grid, eddies of the scale of

the grid size that now contribute to the internal mixing of the cloud

are still described by the advection terms in the equation. Therefore

the diffusion coefficient should only represent mixing up to the Length

scale of the spatial discretization of the mathematicaL model.

The dispersion process in a two-dimensional flow field is undoubted-

ly extremely complex to handle, because of the incomplete understanding

of the several mechanisms involved and the difficulties in their

mathematical descript.ion. An authority on the subject, A. Okubo,

states in concluding a chapter on horizontal and vertical ~ixing in

the sea �6!: "Diffusion is Confusion. Nobody but Maxwell's demon

really knows what's going on"! Mithout attempting here an exhaustive
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investigation of the phenomenon, some important aspects are examined

in the subsequent sections with the particular goal of giving rational

quantitative expressions for mechanisms  b! and  c!  described above!,

useful in mathematical modeling applications.

3.2 The Horizontal Edd Diffusion Coefficient

The introduction of the eddy diffusivity concept is based on

the convenient assumption that the small scale mixing due to turbulent

velocity fluctuations is analogous, although much more intensive, to

molecular diffusion. In the application of this concept to models of

diffusion processes in large water bodies, the coefficient is commonly

used to incorporate any large scale mixing not accounted for explicitly

by the advective terms, as discussed in Section 3.l. For estimating

the value of this coefficient for a particular problem, of primary

importance are the intensity of the turbulence as measured by either the

r.m.s. velocity fluctuations or the supply or dissipation of turbulent

energy, and the length scale over which the mixing takes place.

From the theory of locally isotropic turbulence the well-known

4/3-law is derived. This is based on the condition that the eddies

responsible for mixing belong to the inertial subrange of turbulence,

that is, the range where the energy influx from larger size eddies is

balanced by energy transfer and dissipation to smaller size eddies. As

presented by Osmidov �2 ! the 4/3-law is written:
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wher e

c = the eddy diffusivity

e = the rate of energy dissipation

L = the length scale

c = a dimensionless constant, or order 0.1   61!.

Alternatively, for diffusion on the sea surface under relatively calm

conditions, E, has been simply expressed as �1!:

4/3 �. 2!

where k is of the order of 0.01 in CGS units  varying from 0.005 to

0-016!. Nevertheless, the value of c or k cannot be discussed inde-

pendently of the value of the length scale used in the above formulas.

Certainly, the structure of oceanic turbulence is not necessarily

isatzapic. It is argued, however, that eddy sizes much different than

the areas of direct energy influx are essentially isotropic in the

horizontal directions �2!. Of course, this isotropy is not extended

to the vertical direction due to the limitation of the bottom or strong

density stratification. Consequently, the vertical diffusion coeffi-

cient should be much smaller than the horizontal coefficient. since it

is associated with a smaller length scale. Moreover, in the areas of

significant energy influx the corresponding eddies will not follow the

laws of the inertial subzange, that is, the 4/3 law will not hold

and a plateau in the value of horizontal diffusivity should be reached.
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Qualitative agreement of these considerations with measurements is

presented in �8! and shown in Figure 3.1. The length scale was

2
defined as k = 3o', where 0 is the radial variance of the horizontal

distribution of the patch. The eddy diffusivity was determined from

0
2

C
4t

�. 3!

which is apparently based on a circular idealization of the patch

and the assumption of two-dimensional Gaussian distribution.

According to Figure 3.1

10 3 g4 3 10

10 10 < k < 5 10 � 4!

5 10

c = 0.01 k 10 < R < 10 cm
3 8

�.5!

where E and k as defined above.

While �.5! is useful as a first estimate of c under any

conditions, it is not based on any theoretical arguments. Most
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2
where E in cm /sec and R in cm.

It is seen that the constant of the 4/3 law decreases at larger length

scales.

A very good collection of diffusion data in the ocean was

presented by Okubo �5!, who proposed as best fit to all the data

the relation
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importantly, the individual sets of data  which necessarily extend

aver smaller ranges of k! seem to follow quite closely the 4/3-law,

but with different constants of proportionality. These 4/3-power

lines are drawn  by eye! in Figure 3.2 along with Equation �.5!

given by Okubo. It appears that the slower growth of c with k

indicated by �.5! does not prove that the 4/3 law is not valid,

but may be simply due to general shifts in the 4/3 dependence  as

seen from Figure 3.l! and also to some differences of energy inten-

sities between the individual areas where the measurements were taken

-3
from. The constants of the 4/3-power fits are of the order of 10

CGS units, as shown in Table 3.1.

Table 3.1

Constants k of 4/3 � power law fitted
to individual sets of data of Figure 3.2
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These values are consistent with �.4! but both appear an

order of magnitude too low if compared to the average value of k

in Equation �.2!. This apparent contradiction is, however, caused

by different definitions of the length scale used in the formulas.

Indeed, L in �.2! is defined as the typical distance between

diffusing particles and the diffusion coefficient was measured as

1 Ar.
E

2 hg
�.6!

Then, L = v2 g and consequently k = 3L/v 2 . By also comparing the

forms of �.3! and �.6! it is seen that there must be an overall

factor of 4  � ! = 10.9 between the constants in Equation �.2! and3 4/3

D2

work.

A more general way of expressing the eddy diffusivity is in the

Table 3.1. The order of magnitude discrepancy is thus explained.

Earlier data reported by Orlob �9! also agree quantitatively

with �.2!, Thus, the 4/3 law seems theoretically and experimentally

acceptable for expressing the horizontal eddy diffusivity in the sea,

provided the length scales of interest are not of the order of the

size of the energy containing eddies. In addition, the 4/3 law is

not fully acceptable near the shore  92!, due to the shoreline and

bottom interference and the presence of a strong wave energy band-

the waves being neglected in deeper water throughout the present



U = the r.m.s. turbulent velocity fluctuationwhere

and L = the  horizontal! length scale of turbulence

far from the wall, the length scale tends to an asymptotic value of

0.08 to 0.10 of the pipe radius or the channel depth; this is an

order of magnitude smaller than the size of the largest eddy that
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Arguing that temporal and spatial variability are analogous,

it is seen that in isotropic turbulence Equation �.7! is equivalent

to the 4/3 law, since U ~ AU ~  eL! . Therefore, the length1/3

scales of �.7! and �.1! or �.2! are equivalent within a dimension-

less constant. An expression of the eddy diffusivity in the form

�.7! or �.1! instead of single length dependence as in �.2! or

�.5! presents the advantage of incorporating specific knowledge of

the turbulence intensity in the area under consideration and can be

more useful when the effect of varying mixing intensity caused by

changes in meteorological conditions over time has to be taken into

account. Of course, the simpler formulas can be used as good approx-

imations in less ambitious modeling efforts. In any case, the

appropriate length scale to be used in a finite difference or finite

element model needs to be examined.

The concept of the length scale of turbulence is not precisely

defined and is commonly quantified indirectly through measurement of

other turbulent quantities. Various investigations carried out

mainly in boundary layer flows and summarized in  83! show that,



could conceivable be formed in the flow. Similar conclusions have

been reached in free turbulent flows �9!.

Extending the above to coastal waters, where the flow field is

prescribed  known! at certain grid points, it may be argued that the

internal horizontal mixing within the grid "cells" can again be

represented by using a length scale an order of magnitude smaller

than the typical grid size. In fact, some investigations have been

carried out with respect to the so-called "sub-grid scale" eddy

coefficient applicable to high-speed numerical computations of

turbulent flows. This is introduced into the various schemes to

account for the turbulent exchange due to eddies smaller than the

characteristic grid size and thus not explicitly representable in

the computations. The length scale used for the evaluation of such

sub-grid scale eddy viscosity coefficient is generally given as

L= ch,

where 6 is the finite difference grid interval and c is a numerical

constant, with a value ranging from 0.20 far isotropic turbulence to

0.10 in shear flows �7! . However, the resolution capabilities

associated with large-scale averaging of the hydrodynamic model being

used have to be taken into account. For example, it has been found

 84! that it is not possible to reproduce horizontal eddies of diameter

less than five times the grid size. In this case, a factor of 5 should

be incorporated in Equation �.8!.

With respect to the dependence of the eddy coefficient on the
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velocity fluctuations, an order of magnitude estimate can be obtained by

using such values as lOX of the local velocity. Alternatively, employ-

ing the mixing length hypothesis �9!:

U ~ � -Lhv

AL

hU
where � = the velocity gradient over the distance L.

hL

In a two-dimensional flow field � is expressible in terms of derivativeshv
QL

in both x and y directions and finally Equation �.7! becomes equivalent

to   24!:

2 � 2 � � 2
Bu Bv Bu Bvwhere ]=2 � +2 � + � +-
Bx By By Bx

This form has been used for modeling the eddy diffusivity  l7, 4 !

although in the latter reference the length scale was associated with

the flow depth and not with the horizontal grid size.

As discussed in   39!, a better way of expressing 0, especially

in areas with small mean velocity gradients is

e

where e the turbulent kinetic energy. However, additional equations

would be needed for the transport and distribution of e, and this is

beyond the scope of the present work.

Equation �.9! permits a straightforward calculation of the

turbulent diffusion coefficient in terms of the grid size and the



 supposedly known! values of the mean velocities at the grid points.

It is particularly convenient with respect to a finite element grid

with linear expansions because the velocity gradients are then con-

stant over each element  see Chapter 7!. The value of I can be

approximately given,based on the equilateral triangle case

 Figure 3.3!:

L . = � d = � � As = 0.12 hs
1 1 2

min l0 10 + �.10a!

Alternatively, using the fact that A = � hs, one obtains:2

L.=017~A �.10h!
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Before closing this section, a graphic comparison of the various

expressions is worthwhile. In Figure 3.5 formulas �.2!  with k = 0.01!,

�.6!  multiplied by 10.9, as discussed earlier! and �.7! are compared

in the range of 0.2 to 5 km, which are common length scales in numer-

ical modeling of coastal waters. In Equation �.7! the value of 0 is

set equal to 10K U, where U = 5 cm/sec, a typical current velocity

under calm conditions, which pertain to most of the measurements

used to support the other two formulas.
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3.3 The Shear Dis ersion Coefficients

These coefficients are used to quantify the effective horizontal

transport caused by velocity and concentration nonuniformities over

a layer depth. For one-dimensional steady pipe flow the "diffusion

analogy"

U"c" dA = E

where A is the cross sectional area, was introduced by G.I. Taylor

  76!. Subsequently, the value of the shear dispersion coefficient

has been theoretically determined for a uniform steady flow in a

straight channel by Elder �8! and extensively investigated,

theoretically and experimentally, in less ideal one-dimensional flows

�1, 27, 30!. An extension to two-dimensional flows has not, so far,

been introduced. The validity and the limitations of such an extension

will now be examined.

In the three-dimensional convection-diffusion equation, where

the vertical velocity component has been neglected,

� + u � + v � = �  g � ! + �  Z � ! + �  E � !Bc Bc Bc B Bc B Bc B Bc

Bt Bx By Bx x Bx By y By Bt z Bz

set  as in Section 2.1!

u=u+u"

v= v+v"

c=c+c"
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and neglect the horizontal eddy diffusion terms. Paralleling Taylor's

assumptions, consider the concentration fairly well distributed over

the layer thickness, i..e., c»    c, after sufficiently long time.

Then, seek a solution satisfying

Bc 3c Bc� +u � +v � = 0
Bt Bx By

which implies

u» � + v" � = �  C !Bc � Bc 3 Bc
3x 3y 3z z Bz

or, since c" « c:

u" � + v" � = �  C !» Pe' » ~ 3 Bc»
Bx By Bz z Bz

�. 11!

This equation expresses the balance, at any point, between the in-

homogeneous convective transfer of the admixture and the vertical

diffusion associated with small variations in concentration over the

depth �1!. These variations can be viewed as adapting themselves

to the flow field variability so that, after a sufficiently long

time, the balance is achieved.

Integrating �.11! over z:

Bc � Bcu»dg +-
Bx By

0

3."
v"d< = C

z 3z
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Integrating again one obtains for c":

g*Bc ' dq~
By E

z
0 0

'd*
u"dZ

E
z

0 0

c
Bc

Bx
v"dg + const. �.12!

Substituting this expression for c" and noting that the constant of

integration, when multiplied by u" or v" and integrated over H, will

give no contribution, the integral

u"c"dz takes the form'.

B � H z d ~ g*
u"d< + � u"dz vttdr

By E
0 0 0

«d* *
z

0 0

H � H

Bx

Employing partial integration, recalling that

H H
u"dz = v"dz = 0

and multiplying both sides by -1, we obtain:

H
Bcu"c"dz =�
Bx

u"d<! d z +�
2 Bc

By
0 0 0

�. 13a!
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H �  
E

z

H z z

  "dC!   v"d0! «
z

0 0 0



By similar manipulations:

H
v" c "dz

Bx

z z H z
u"1<!   v"d4! dz + � �   v"dg! dz

By c
z

0 0 o 0

H
�  
C

2
0

�. 13b!

It is seen that the integrated transport due to the spatial deviations

of velocity and concentration from their depth-averaged values have

been expressed in terms of the horizontal gradients of the average

concentrations. Thus, the representation of this transport by

Equations �.13a,b! is ]ustified. In particular, the shear dispersion

coefficients are now identified as:

d 1 1 �2

0
z

0

�. 14a!

H 1 z
  v" d4! dz

z
0 0

E d 1
yy H

�. 14b!

d d 1
E E = �   u"d !   v"d !dz

xy yx H
z

0 0 0

�.14c!

-60-

These expressions represent an extension of Elder's   18! one-dimension-

al formula  similar to 3.14a! to a two-dimensional flow field. Because

velocity variations in two directions are now explicitly considered,

it is believed that Equations �.14! will be valid under less

restrictive conditions than its one-dimensional counterpart. Certain-

ly, the derivation was made under certain simplifying assumptions and



the resulting expressions cannot always be adequate. The velocity

field as well as the velocity profiles, represented by u" and v" may

in reality vary over both space and time. Inherent in the derivation

is, however, the condition that this variation is not too severe. As

already pointed out, Taylor's approximate treatment of the dispersion

process is valid only a sufficiently long time after the material has

been introduced into the flow, ensuring a more or less uniform distri-

bution over the depth. Fischer �1! has found that the "initial time",

T , is about half the time scale for cross sectional mixing, T . For
c

vertical mixing   5 !, this is given by

2
H

2
'll' C

Z

�.15!

For valves of H ~ 20m and g w 50 cm /sec it is found that T is of
2

Z I

T/T ! 1
C

the dispersion coefficient is essentially the same as if the flow is

steady at any point in the tidal cycle. As a consequence, and since
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the order of 1 hour. Consequently, Equations �.14! may be considered

approximately valid provided there are no significant velocity changes

within this period.

Of particular interest is the effect of a tidal flow component

on the dispersion coefficients. Previous investigations on the subject

for one-dimensional flow �7, 30, 12! have revealed that of primary

importance is the ratio of the tidal period to the mixing time scale

T . It was found �0! that for
c



H

]
C

2

�.17!

Further analytical expressions for the shear dispersion coefficients

in the case of falling particles can be found in �4!.
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the dispersion coefficient involves the square of the velocity, its

average value over the tidal cycle is half the value it would have for

a steady current equal to the maximum tidal current �7!. Condition

�.16! seems to be normally satisfied in coastal waters.

The importance of the vertical diffusion coefficient E for
z

the horizontal dispersion process cannot be underestimated. Equations

�.14! show that a decreased vertical diffusivity leads to a direct

increase in the shear dispersion coefficients. However, the dispersion

approximation itself could at the same time be questionable, since the

vertical mixing time may become unacceptably high.

The arguments so far have been developed for the case of a

neutrally buoyant constituent. The treatment can be modified to

handle settling particles as done by Elder �8! in the one-dimensional

case. The shear dispersion coefficient will in that case depend not

only on the flow characteristics but also on the settling velocity.

However, unless a settling velocity term is included in Equation

�.11! such an extension will be restricted to very fine particles,

the vertical transfer of which is dominated by the vertical eddy

diffusivity rather than the settling velocity, i-e.



It will now be shown that the shear dispersion coefficients

given by Equations �.14 a,b,c! define a second order  symmetrical!

tensor:

d

XX
�.18!

d
It suffices to prove that the expressions of E in two different

coordinate systems are related by tensor multiplication. In the

syste~  x,y! let the velocity components be  u,v ! and in  x',y'!

be  u,v !, as shown in Figure 3. 4.

Then:

u2
�. 19a!

v2 J vl

where

sin8os8

cos8sin8

is the coordinate transformation rotation matrix.

Since the rotation 8 is constant with z, the layer � average velocities

are

U2
�.19b!

v1V
2
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and consequently, by subtracting �. 19a! and �. 19b!:

11
u2

II
Ul

�.19c!
11

vl
11

v2

Therefore,

= cos 8 E + sin 8 E + 2cos6sin8 E
2 �! 2 �! �!

XX yy xy
�. 20a!

where the superscripts �! and �! denote the coordinate systems

 x,y! and  x',y'! respectively.

Similarly,

E = sin 8 E + cos 8 E � 2cosBsin8 E�! 2 �! 2 �! �!
yy xx

�.20b!

and

E = -cos8sinB E + cosBsin8 E +  cos 8-sin 8!E �.20c!�! . �! �! 2 2 �!
xx yy XJJ

In compact form, Equations �.20 a,b,c! can be written as

E�!, l! T-1 �.21!

and this proves that indeed E is a second order tensor.
d

-64-

E = � �   u "d<! dz�! 1 1 �2 1
xx H e 2 H

z
0 0

H 1
� [

z
0

z

  U 1 c 0 s 8 + v 1 ' s i n 6 ! d g ] d z
0



The transformation relation �.21! permits the evaluation of the

shear dispersion coefficients for any coordinate system, provided the

velocity profiles along any two  arbitrary! perpendicular directions

are known. Such knowledge may be available either through measure-

ments or from experience with the general characteristics of coastal

currents, particularly in the area of interest  9!- » general t"e

velocity vector at any level will not necessarily be parallel to the

layer-average velocity vector. In other words the velocity profiles

in the x and y directions may have different shapes. Unless very

detailed supporting information is available, accepting different

profiles in x and y  as was done, for example, in �6!! implies

that the results will be dependent on t' he coordinate system chosen.

Thus, when one has only a vague idea about the velocity distribution

over the vertical, the establishment of a relation between the dis-

persion coefficients and the flow characteristics should be based on

an assumption of some kind of self-similarity of the velocity profile

in the layer; that is, on the assumption that the profile shape remains

the same irrespective of direction. This shape need not be constant

but it may change over space and time. It can be more uniform when

the flow is dominated by the tide and less uniform when the wind

exerts a strong inf1uence. In any case, once this assumption is

acceptable, it can be readily seen from Equations �.14 a,b,c! that

the shear dispersion coefficients are expressible in the form
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d H
E

xx E
z

�.22a!

� 2 2
d ! v H �. 22b!

2
d uvH

xy
�.22c!

with the same constant of proportionality X. The values of A for

some simple profiles are listed in Table 3.2. It is assumed that cz

is constant over the layer thickness and also that there are no flow

reversals in the velocity profile, being unlikely because of the

definition of the "layer" with the natural boundary of the thermocline.

Such reversals, of course, can be easily handled in the general

formulas �.14! but the outcome will have to be expressed through

some other velocity scale rather than the mean.

The principal axes of the dispersion coefficient tensor can be

found from Equation �.20c!, by requiring that E = 0 and solving�!

for the angle 9. In the simple case that Equations �.22! are used

dit is easily seen that E = 0 when either u or v vanish, implying

that the principal axes coincide with the direction of the mean flow

and the normal to it. It is, furthermore, evident that, if v ~ 0,

the lateral dispersion coefficient E also vanishes. Thus, thed

yy

several experiments in the ocean  >6!.
-66-

lateral spreading of the constituent is left to the horizontal eddy

diffusivity alone. These conclusions agree with the generally observed

higher "overall" diffusion coefficients along the flow direction in



Table 3.2

Constants X in Shear Dispersion Coefficient Expressions  Eqs. 3.22!

*Note: for k = 0.4 and u+ = 0.06 u.
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3.4 The Vertical Diffusion Coefficient

As for the horizontal exchange, the concepts of vertical eddy

viscosity and diffusivity have long been used to describe the turbulent

exchange in the vertical direction of momentum and mass, respectively.

The two coefficients are considered approximately equal in well~ized

regions. In this section the relation of the vertical exchange coef-

ficient within each layer, which plays an important role in the hori-

zontal dispersion rate  as seen in the previous Section! to the mean

flow parameters is examined.

In a given layer there is ideally no density gradient, although in

reality there may be a small one. Under such homogeneous conditions,

the vertical turbulent diffusivity {viscosity! is usually related to

the velocity profile. Prandtl introduced the concept of mixing length,

as representative of the exchange distance of vertical eddies and

expressed the vertical eddy viscosity as:

E ~ p2 3u
z 3Z

where � is the local velocity gradient. This indicates a largerQU

8Z

coefficient in regions of high shear, however it is not applicable

when � = 0. The determination of the mixing length is a source of3u

az

difficulty in this kind of approach. It is generally related to the

dimensionless distance from the wall, for wall-generated turbulence.

The functional form of the mixing length would yield the form of the

vertical eddy viscosity and this in turn is related to the velocity
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c =ku Hq �- rl!
z * �.23!

where k = 0.4, is the Von-Karman constant

u� is the shear velocity at the wall

rl is the dimensionless distance from the walland

For the region far from the wall a constant value was proposed, based

on experiments by Reichardt:

0.067 u� H
z

�,24!

This is precisely equal to the average value of the parabolic distri-

bution of Equation � .23!, and may be considered a good typical value

to be used in the absence of any other information,

Ef the profile is actually logarithmic, u� ~ 0.06 U  depending

on the friction coefficient!, therefore Equation �.24! can be

rewritten in terms of the mean flow velocity

= 4.10 U H
z �.25!
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profile also. A review of various eddy viscosity profiles, associated

with different velocity distributions, along with experimental measure-

ments is included in  83!. For the logarithmic velocity profile,

commonly used in open channels, the vertical eddy viscosity distribution

is parabolic:



Considering a layer in the sea, as defined in this work, the

conclusions derived from open channel hydraulics are relevant to some

extent. Near the interface the value of E does not go to zero but
z

still to a rather small value, under stable stratification  Chapter 4!.

Near the surface, wind and wave effects cause an increase in vertical

exchange intensity and raise the value of z . It appears that the
z

distribution of c in such a layer would be more uniform than a
2

parabolic profile. Of course, the actual velocity profile may not

be logarithmic, either. The use of a constant value for e in the

layer is consistent with the mathematical idealization of the system.

The two-layer  or n-layer! discretization implies that variability

of the parameters over a layer thickness is not handled explicitly

because either it is really unimportant or is neglected for simplifi-

cation.

For a layer of 10m thickness and s mean velocity of 0.10 m/sec,

Equation �.25! yields for the vertical eddy diffusivity
3 2 2c = 4.10 m /sec = 40 cm /sec. This is well within the range of

z

field data in the sea. Kullenberg �7! has carried out extensive

measurements of vertical diffusion in shallow waters. For a layer

of 14m depth, with almost non-existing stratification

1 3n -6 -1  � = 2.2 x 10 m , i.e., total density difference over the
p Rz

0 2depth 0.03 @o!he found a mean c = 60 cm /sec, ranging between 50 and
z

2110 cm /sec. These values are consistent with �.25! provided the

mean velocity was about 0.10 � 0.20 m/sec. Indeed, the observed
-2 -1

current shear was 4.1 x 10 sec ; for a linear velocity profile,
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2
thickness, values of E up to 100 cm /sec have been reported. Much

z

smaller values have also been reported, apparently due to significant

stratification over such large layer thicknesses, Values around

2 1 Bp -6 -1
100 cm /sec were found for � � <10 m , i.e., a density difference

p 3z

of 0.01 /oo over 10m, negligible when compared to the density dis-
0

continuities considered in the present two-layer discretization.

2
Further, the value 100 cm /sec is proposed as typical for a mell-mixed

upper layer of 200 ft  = 60 meters! thickness. This is consistent

with �.25! provided the mean velocity in the layer is about 0.04 m/sec

 velocity magnitudes were not given!.

An alternative way of expressing the vertical eddy diffusivity is

in terms of representative vertical eddy characteristics, as was done

for the horizontal exchange. Thus, one may write �6!:

= w L
z z

�. 26!

where w is the r.m.s. vertical velocity fluctuation and L is the
z

vertical length scale. As has already been indicated in Section 3.2,

L is of the order of 0.08 to 0.10 of the layer depth. The vertical
z

velocity fluctuations are generally smaller than the horizontal ones;

according to  91!, w/u - 0.5. Applying for u the value of one tenth

of the mean velocity, commonly used for shear flows, one finally

obtains from �.26!:
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the velocity at 10m depth  where the dye was injected! would then be

approximately 0.16 m/sec. A summary of measurements in deeper waters is

presented in   36!. In surface layers of up to 200m



c = 0.05 U x 0.08 H = 4.10 U H
Z

in agreement with �.25!.

In conclusion, it appears that Equation �.25! gives a

reasonable approximation to the vertical eddy diffusivity. When this

expression is substituted in Equations �,22!, the dispersion coeffi-

cients are only related to the mean velocities and the layer thickness,

which are the simplest flow characteristics in a layered system. Of

course, in �.25! the magnitude of the velocity vector should be used

for U . In this formula the effect of wind is only implicitly taken into

account, i.e., through its contribution to the layer velocity. A

discussion of vertical exchange caused primarily by the wind can be

found in  85!. Finally, waves may significantly affect the vertical

diffusion near the sea surface. Measurements for low to moderate sea

states have resulted in the empirical formula �6! F = 0.02 H /T
2

Zgs W W

for the value o f c at the sur face, where H is the wave height and
Z w

2
T the wave period. Thus, a 3 foot wave would imply E 50-90 cm /

w z %s

sec. This is of the same order of magnitude as the average values

of c for the top layer discussed earlier. Therefore, moderate waves
Z

may be considered as a factor justifying a uniform distribution of the

diffusion coefficient over the top layer thickness.
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CHAPTER 4

INTERFACIAL TRANSPORT

4.1 Descri tion of the Phenomenon

The transport of material through the interface separating two lay-

ers constitutes in the model the only link between them. If such trans-

port is absent, any quantity introduced into a layer will be simply

dispersed within the layer, under the appropriate circulation pattern.

When the interface is identified with a strong density gradient

 eg. the thermocline in oceans or lakes, or an atmospheric inversion in

the atmosphere!, it has been common practice in the past to neglect any

transport through it, on the grounds that it is very small. An addi-

tional reason has probably been the difficulty of quantifying this

transport. Even though a density gradient does, indeed, have an adverse

effect on the quantity of the material being transferred between adja-

cent layers, this quantity may not always be negligibly small, and

its contribution may be significant over the large length scales

characteristic of coastal areas. In the case where the constituent

has some vertical mobility, e.g. settling velocity, neglecting the

interfacial transport is clearly unacceptable.

Focusing on the two-layer system, which has been formulated in

detail in Chapter 2, we may recall that the rate of transport of a

constituent through the interface is expressed as:

1 2Q =  w � w ! +  x c � c !
e s
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where Q2 is considered positive when the overall transfer is from

layer 2  bottom! to layer 1  top!. The "settling velocity" w is a
s

characteristic of the constituent under consideration and will be

supposedly known. For example, for fine non-flocculating suspended

sediments it may be determined from Stoke's law. In this chapter

the physical meaning of w and ct is discussed and a quantification of
e

them is attempted.

Neglecting settling, the interfacial transport of a neutrally

buoyant constituent is written as:

cl+c2
Q=w+ X c-c!

e
�. 2!

As already indicated in Section 2.1, the first term of Equation �.2!

expresses the transport associated with the relative vertical motion

of the interface and the neighboring water particles, while the second

term represents diffusive flux through the interface, associated with

the concentration difference between the layers. Thus, the former

involves a net water flow across the interface, while the latter does

not.

� 74-

It is well known that a turbulent layer flowing in relatively

quiescent ambient water causes "erosion" or "entrainment" of the

adjacent fluid, that is, a net mass flux from it. The term entrainment

is most familiar in jet theory, where the "entrainment velocity",

quantifying the intensity of this mass flux, is considered proportional

to some characteristic jet velocity   33!, In a lake or in the ocean



a strong wind stress producing a high flow velocity in the top layer

causes entrainment of the lower layer and erosion  deepening! of

the thermocline �7!. In the case of a jet the entrainment process

need not be associated with a density difference, since a jet is

easily identified because of its high momentum relative to the am-

bient water. In large water bodies, however, the density "c[iscontin-

uity" may actually define the layer, as is the case in the present

work.

The mechanism of erosion of a density interface has been examined

most1y experimentally �5,52,79! and mechanistically explained by

Pedersen �6!. The turbulence in one of the layers causes a system

of irregular interfacial cusps. Turbulent eddies appear to scour

the interface by detaching wisps or streamers from the crests of

the disturbances and rapidly removing them from the vicinity of the

interface and diffusing them within the turbulent layer. Thus, some

of the non-turbulent fluid is being swept away from a cusp and becomes

entrained into the turbulent layer. This mixing process occurs in

bursts and, according to �5!, a point at the interface may be subject

to one such "event" about every 100 seconds. Evidently, this type of

mixing is a one-way transport of water from the non-turbulent to the

turbulent fluid. However, when both layers are turbulent, a two-way

transport has to take place, the interface being eroded by eddies

coming from both sides. According to Turner �9 !, the events causing

removal of fluid from the interfacial cusps are rare enough~so that

they can be considered statistically independent, as experimental
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evidence also indicates.

Section 2.1, i.e.

�.3!
e 21 12

Consider now a constituent having concentrations c and c in layers 1

and 2, respectively. Arguing that the wisps being removed from each

layer and being incorporated into the other contain these concentra-

tions, we may write for the net transport from layer 2 to layer 1 the

fallowing expression:

�.4!
21 21 2 12

This can be easily rewritten as:

1 2 21 12

21 21 12 2 2 2 1
�. 5!

By comparing Equations �.5! and �. 2! and using Equation �. 3! it

is seen that
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Let us consider two turbulent layers, moving at arbitrary

velocities  Figure 4.1!. Denote by m and m the volume rates  per
12

unit projected area! of transport of water through the interface from

layer 2 to 1 and from 1 to 2, respectively. The net volume rate

moving through the interface can then be expressed as their difference.

This net rate has been identified as the entrainment" velocity in



H

�

too /Pi'5020

Figure 4.2 Experimental Results of Lofquist, Replotted in   7 !
-7 7-

10
2

Figure 4.1 Schematization of Interfacial Transport



12 21
QL

2
�. 6!

�.7a!21'2

which is consistent with the visualization of the mixing process as

a one-way transport in this case. When both layers have identical

characteristics, it is m = m = m, and the transport rate is ex-
21 12

pressed as:

21 12
+ m

<21 2 '2 '1' '2 �.7b!

In this case there is no net water movement through the interface,

which is a common assumption for hydrodynamic models at steady state;

however, transfer of matter through the interface does occur, and it

Tnay be significant if the concentration difference between the layers

is large.

The problem of relating the entrainment rates to the structure

of the turbulence, let alone the mean flow characteristics, remains

unsolved   67!. In the next section a review of relevant studies is
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Thus, the interfacial transport rate is simply expressed as the

net entrainment rate times the average concentration of the layers

plus an average entrainment rate times the difference in layer concen-

trations. When one of the layers  say, layer 2! is non-turbulent,

Equation �.5! or its equivalent Equation �.4! reduces to



made in an attempt to arrive at reasonably general quantitative

expressions for the interfacial transport processes.

4.2 Review of Related %lark

Several experimental and semi-empirical studies have been conduc-

ted in the past concerning mass transport in stratified systems. Most

of the information available at present comes from simple laboratory

experiments made under horizontally one-dimensional flow conditions.

However, the various investigators have often been using different

length and velocity scales, so that it is quite difficult to compare

quantitatively their results. In addition, the applicability of

some of the results in a real water body is doubtful, due to the

particular experirrrental conditions.

Experiments on a two � layer system were made by Turner �8!, who

induced turbulence in one of the layers by means of an oscillating

grid and measured the rate of thickening of the layer due to entrain-

ment. He used as length  R! and velocity  U! scales those associated

with the grid turbulence and hence dependent on the mesh size and

stirring frequency. His results showed a different functional rela-

tion of the entrainment velocity to the overall Richardson number,

depending on whether the density stratification was caused by terrrper-

ature or salinity. Thus,
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-3/2
w /U ~ Ri

e 0
�. 8a! Salt!

-l
w /U ~ Ri

e 0
�.8b! Heat!

for

g~~
Ri =~ 	

0 2

It may be argued on dimensional grounds �8!, that three non-

dimensional parameters may, in general, affect the interfacial

transport process. In addition to the Richardson number, these are

the Reynolds number

U RRe = v = kinema tic vis cosi ty

and the Peclet number

U gPe =, v = molecular diffusivity of substance
K

As discussed in �8! and �5!, the effect of molecular diffusion

for low Peclet numbers  Pe < 200! may account, at least qualitatively,

for the observed difference between �. 8a! and �. 8b! . Long �9!,

however, has attributed this difference to erroneous interpretation

of earlier experimental results and accepts �.8b! as fundamental.

Apart from the fact that grid turbulence experiments do not seem



w /U ~ c/Ri
e 0

�. 9!

where

Ri
0 � 2

U

H being the layer depth and U its mean velocity.
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directly extendable to natural coastal waters  where most of the turbu-

lent energy is associated with shear!, the latter are normally charac-

terized by high Reynolds numbers. In fully established turbulent

flows the effect of the Reynolds number is traditionally considered

unimportant. A high Reynolds number implies a high Peclet number,

too, since in most cases g >> g. Therefore, the only parameter to be

considered in practical cases is the Richardson number.

Turner's experiments have made clear that, in the absence of mean

flow, the entrainment rate is essentially proportional to the turbulent

intensity of the corresponding layer near the interface. When both

layers were stirred at the same frequency, the interface remained

fixed in the centre. When stirring was unsymmetrical, the interface

tended to move away from the region of more vigorous stirring.

When a mean flow is present in a layer, the turbulent intensity

is often considered proportional to the mean velocity. Experiments

with mean flow have been mostly carried out with one layer quiescent.

By measuring the rate of thickening of the turbulent layer, the

following relation was found:



Early experimental investigations by Ellison and Turner �9! on

a surface jet flowing over heavier fluid and on a salt water layer

flowing under fresh water, both on a sloping channel, established

-3
the validity of Equation �.9! with c = 5 x 10 . However, their

overall Richardson number was less than unity, which is not common in

natural stably stratified waters. Lofquist �6! experimented on a

salty layer flowing under quiet fresh water and found a dependence on

the densimetric Froude number, but not on the Reynolds number. His

2
results were replotted in   7 ! vs. the Richardson number, Ri = 1/Fr

-3
and presented as Figure 4.2. This indicates a value of c ~ 10

The hydraulic radius was used instead of the layer depth, to accaunt

for the limited width of the channel.

Later, Kata and Phillips   35! determined experimentally the rate

of motion of the interface associated with a shear stress applied on

the surface of an initial.ly linearly stratified fluid. Using the

shear velocity at the surface, U , as their velocity scale, they found
s

a value af c = 2.5  Figure 4.3!. The layer-average velocity was

observed to be about half the velocity af the screen, with which the

surface stress was achieved. From the given measurements of this

stress, it follows �9! that U = 10 U . Thus, the constant c of
s

-3
Equation �.9! is found to be 2.5 x 10, in reasonable agreement with

Lofquist's value.

However, the abave experiment is not really representative of a

two � layer system, because af the initial linear stratification  which

continues to be maintained below the interface!. Wu  90! studied the
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entrainment due to wind acting on the free surface of a two-layer sys-

tem. Using the same velocity scale as Kato and Phillips, he concluded

that c = 0.234, i.e., an order of magnitude smaller than before. He

suggested that the discrepancy may be due to different velocity pro-

files in the two cases. In his experiments, there was a significant

countercurrent over the lower 3/5 of the top layer and there was no

net overall velocity. This countercurrent was observed to be about

three times the surface friction velocity. The velocity scale U
s

used by Wu was found by applying a reduction factor of 0.685 to this

friction velocity. If we use in Equation �.9! the velocity of the

countercurrent, U = 3 U /0.685 = 4.38 U, which is adjacent to the
s 8

� 3
interface, the coefficient c becomes equal to 2.7 x 10, in close

agreement with the previous results. Wu's results were later con-

firmed in Delft   7 !.

Recently, Hansen �5! carried out a theoretical investigation

on the rate of deepening of the surface layer of a small lake due to

wind stress. For moderate to large times, the balance between surface

stress and pressure forces yielded Equation �.9! with c = 2.36,

which is essentially the same as Kato and Phillips' result. It also

agrees well with Lofquist's data slightly modified by Hansen.

Finally, Long   50!, in modeling a two-layer estuary with a deep

quiescent lower layer and using the r.m.s. turbulent velocity U as

velocity scale, conlcudes that c = O.l, based on some of his own

theoretical considerations �9!. He subsequently argues that U is

of the same order of magnitude as the mean layer velocity in this
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as

� 3
cU e

W CC
e

g H g
�.10!

one may view entrainment as the result of consumption of part of the

turbulent kinetic energy for shifting the level of t' he density

discontinuity, thereby altering the potential energy of the system.

The relation of entrainment to the energy characteristics of the

two-layer system has long been recognized and examined in most studies

on the subject. Long �9!, in particular, proceeds in using energy

arguments in an effort to offer a unified view of experiments with

and without shear.

So far, the quantification of one-way transport, from a quiescent

to a flowing turbulent layer, has been examined. At the other ex-

treme, in the case of a counterflow, the interface must remain fixed,

because of symmetry. However, interfacial transfer of properties

does occur. This problem was experimentally investigated by Noore

-85-

case, although certainly smaller. It may be seen that a ratio of

U/U = 4 reduces the coefficient c to the order of the values found

by the previous investigators.

In conclusion, there seems to be agreement on the validity of

Equation �.9! for expressing the one-way interfacial transport,

-3
where the value of c is of the order of 10 . It is worth noticing

�.3
that the quantity 'U /H is proportional to the rate of change of

turbulent kinetic energy in the layer  e!. By rewriting Equation �.9!



and Long  ~2!, who measured the turbulent buoyancy flux q = w'p' in

one-dimensional counterflow and proposed the empirical relation

 Figure 4.4!

8.10
Ri*

0KUhp

�.11!

where

Ri*
0

�U !

where DU is the velocity difference, double each layer's velocity U and

h is the total depth, double each layer's depth H.

Equation �.11! may be rewritten:

8.10 2U
Ap

2H/ AU!
P

Since hp is here the "concentration" difference, comparison with

Equation �.7! yields

8. 10 ' 2U1 8. 10 2U 1

g hp H/ hU!
P

�.12!

where Ri is based on each layer's depth. By comparing Equation
0

�.12! to Equation �.6!, and since m = m due to symmetry, we

obtain
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8. 10 U

12 21
0

This is similar to the result found earlier for the entrainment rate

when only one-way transport occurs. It is seen that the agreement in

-3
the coefficient c is very good and its value around 10 appears well

established.

An alternative way of expressing the diffusive flux of a sub-

stance is by using the concept of eddy diffusion coefficient, assuming

Fickian behavior. This coefficient is widely used in homogeneous

flows and was discussed in Chapter 3. In continuously stratified

flows the decrease of vertical turbulent fluxes has been described

by a reduction of the vertical diffusion coefficient and its

dependence on the density gradient has been the subject of several

investigations   7 !.

In nature there is always a zone of certain thickness over which

the density change takes place, under even the strongest stratification.

Despite our two-layer idealization, the diffusion coefficient concept

could still be used, provided there was some knowledge of the width

of the transition zone. In two � layer counterflow experiments this

has been found to be approximately 0.08 times the total depth �8!,

or 0.16 times one layer's depth, for a wide range of the overall

Richardson number � to 120!.

In stirring grid experiments �5 ! it was also concluded that the

thickness of the interface zone is independent of Ri in the range
0
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ciP

z,i g 8P
p 3z

�. 13!

where c ~ 0�.1!
1

e the rate of energy input into the system.

-2 2 -3
Using a typical value of e " 10 cm /sec one obtains

and

10 2 10 2E . = 1 a  m /sec! - 1 8  cm /sec!z,i 1 ap 1 Bp
p Bz p Bz

�.14!

1 ~B -1
where � has to be given in m

p Bz
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4 to 1500 and equals 1.5 times the turbulence length scale  for high

Peclet numbers!. Since this length scale is of the order of 1/10 of

the layer depth  see Chapter 3!, the width of the zone comes to be

about 0.15 times the layer depth, in close agreement with the pre-

vious value. This would imply that a thermocline at 10m from the

surface will have a minimum thickness of about. 1.5 meters. This is

of the order of observed values, although natural conditions are

certainly not as ideal as in laboratory experiments.

To quantify the vertical eddy diffusivity in the region of the

interface, resort can be made again to the theory of locally isotropic

turbulence  see Chapter 3!. Arguing that eddies larger than a certain

critical size cannot take part in the vertical mass transfer, Osmidov

�2! obtains as a maximum value for the vertical diffusivity,

effective through a density gradient



AP obest fit to available data in stratified regions. For � = 3 /oo,
P

taking place over a 1.5 meters distance, eg. �.14! yields:

10 2
0.05 cm /sec

]

Observed values of the effective vertical diffusivity in the

2region of the thermocline in the oceans range below 1 cm /sec to

2
0.01 cm /sec �6!. Using �.14!, the interfacial diffusive flux may

be written

-8
ac 10 acq.=  ~ � !

z az -h 1 ~a az
1

p Qz

or, considering the concentration and density gradients taking place

over the same thickness:

10

i
Ac �.15!

By comparison with Equation �.7! and �.12!, it is seen that

10 10 U

Ri

P

For U a 0�.10 m/sec!
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Expression �.14! has been, in fact, proposed �6! as the statistically



and � ~ 0 �0 !
Ap -3

4.3 Generalizations and Conclusions

The experimental evidence discussed in the previous section

points out to the following expression for the one-way transport rate

from layer j to i:

10 U
i

Ri
0

�.16!
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one obtains Ri < 0�0!
0

-5
and a~0�0 m/sec!.

This seemingly small value of ot is, nevertheless, of the order

of settling velocities of fine suspended particles, and its contribu-

tion becomes significant over relatively large length and time scales,

especially when multiplied by a large concentration difference.

It is worth mentioning here that, despite its small value,

2
the effective diffusivity of 0.05 cm /sec found earlier is still

several orders of magnitude larger than molecular diffusion coefficients

of most substances. For example, the molecular coefficient for salt

-5 2
is barely 10 cm /sec. Certainly, in an actual two-layer system,

with a near-discontinuity in the profile of density and any other

constituent, the transport caused by molecular diffusion would be

significant. But, since in nature there is always a transition zone

of finite thickness, molecular effects tend to be unimportant and can

be safely neglected within the scope of the present work.



where U the mean velocity of layer i

and Ri the overall Richardson number of the two-layer system
0

Thus

g � Hdp

Ri
 U.-V.!

i j

�. 17!

The proper H to be used in this formula is not quite clear.

Experiments with both layers flowing do not exist except for the

symmetrical counterflow case where the layer thicknesses are the

-3
same. The coefficient 10 in �.16! was seen to be consistent when

one layer's depth is used in the definition of Ri . When the two
0

layers have different thicknesses, their average can be used as a

reasonable value for H. This is consistent with considering the

velocity gradient taking place over the distance between the center

levels of the two layers.

Using Equations �.3! and �.16! we can now write for the

net entrainment rate between layers 1 and 2:

� 91�

When both layers are flowing at different velocities, the Richardson

number has to be expressed in terms of their relative veLocity,

which controls the stability of the interface. In the general case

of a horizontally two-dimensional flow field the Richardson number

is defined in terms of the vector difference of the Layer velocities.



U2I !
�.3 8!

e 21 12 Ri
0

Similarly, from Equations �.6! and �.16! one obtains

m12~21 1 10  I U1I + IU21!
�.19!R

2 2 Ri
0

where in both expressions Ri is given by �.17!. The use of absolute
0

values of the layer velocities in �.18! and �.19! is justified from

the fact that the interfacial transport is a scalar quantity and

consequently should not be affected by changes in the velocity

directions  apart from their effect on the stability of the system,

as expressed through the Richardson number!. This is especially impor-

tant to realize in a two-dimensional flow field, where U and U will,

in general, have different directions. In particular, when ~Ul!

~U2~, irrespective of direction, there should be no net entrainment,

since it is difficult to accept a preferential motion either upwards

or downwards.

The above treatment essentially links the interfacial transport

process to the mean flows in the adjacent layers. This is not a bad

assumption for tide dominated flows which characterize coastal waters

although, in general, interfacial transport may well exist when mean

flow is absent, as indicated by the stirring grid experiments.

The problem of properly describing the mechanisms of interfacial

transport is by no means solved. The quantitative expressions given
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above are believed to be as good as can be obtained at present from

the limited experience available from one-dimensional investigations.

Future research is undoubtedly needed in this area, and this will

certainly be no easy task. In the meanwhile, the sensitivity of

the two � layer dispersion solutions to the values of w and 0
e

may be examined, in order to assess how critical the correct specifica-

tion of interfacial mixing is in various classes of problems. A

first step in this direction will follow in Chapter 6.
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CHAPTER 5

ANALYTICAL SOLUTIONS

3C 3C 3 C

1gx 2 1 2 1 1
+ U = E � � kC +  x' C � C ! + R �.1a!

d C2
-kC -e' C -C !+R

dx

aC aC

2 Bx
�.1b!

C are the layer integrated concentrations
7

R are the source terms

E is the common dispersion coefficient, assumed constant

k is the decay rate, and

where

where u the proportionality constant for the

interfacial transport and H the layer thickness.

The essential features of the phenomenon of dispersion in a two-

layer system can be best illustrated through analytical solutions.

However, such solutions can only be obtained under very simple flow

conditions. The simplest case which may be examined is the counter-

flow in an infinite domain, shown schematically in Figure 5.1. When

U = U2 = U, the net entrainment at the interface vanishes, i.e.
w = 0, according to Equation �.18!. Assuming the interface essen-

e

tially horizontal and consequently the layer depths constant, the one-

dimensional governing equations in this ideal case reduce to:



Figure 5.1 Flow Field Assumed for Analytical Solutions

Figure 5.2 Mass Balance at the Location of the Source
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5.1 1-D Instantaneous In ection

Of fundamental importance in all dispersion problems is the

"unit impulse response", i.e., the solution for a unit load intro-

duced instantaneously at a point, from which, by superposition,

further solutions, for more complicated loads, may be constructed.

In the particular counterflow situation one may consider a quantity

M being introduced instantaneously in one of the layers, say the

tap, at x = 0. For the sake of generality, the solution will be

developed for U f U , arguing that the net entrainment w can still
e

be neglected, provided the velocity magnitudes are not much different.

Since in stably stratified systems the interfacial transport

is generally small and since the material is introduced only in layer

l, it will be C « C for sufficiently small times. Equations

�.la,b! may then be simplified as follows:

ac 1 ac 1 a c 12

+ U 1 a E 2   0 + k ! C 1 + M 0   t ! 5   x ! �. 2a!

ac ac
2

ax 2 2 l
= E � � �,'+k!C + a'C

ax

ac

U
at 2

�. 2b!

-96-

Although the two equations are coupled in a very simple way,

obtaining closed form solutions in the general transient case with

arbitrary sources proves to be extremely difficult. In the following

sections, two practically important problems, that of an instantaneous

and that of a continuous injection in one of the layers, are examined.



�6!:

 z-U t!
2

C = exp[-
~47|Et 4Et

 a' + k!t] �-3!

valid for small times.

Entroducing this expression to �.2b!:

3C BC a C
2

3t 2 Bx 2 2
U = E � �  a'+k!C

8x

2
e'M 2 xU1 Ul

+ exp  - � + � t �   x + k!tl
4Et 2E 4E

�. 4!

This may be solved by use of the Laplace transform  t ~ s; C ~ y!.

The transformed equation is   !:

~d
2

>'M 1sy U ~ E  ei+k!y + exp
2dx 2

dx 2 E
2E

or

Ey" + Uy' �   x'+k+s!y �. 5!
2<E 2

sta'+k+� 1

4E

This is an ordinary linear differential equation of second order.

The corresponding homogeneous equation is

Equation �.2a! contains now only C and i.ts solution is well known



E +Uy �  u'+k+s!y=0
y 2

with characteristic:

This has two real roots

2 1� U + v' U +AE a'+k+s!

'1,2 2E

xU2xU
+ A expy = A exp 2E

+-
2E

�.6!

Requiring that the solution be finite  indeed, tend to zero! as

x ~ + ~, it is seen that

A = 0 for x ! 0
1

and
A =0

2
for x�

To find now a particular solution of Equation �.5! for x ! 0, set:

xU 1 x
�. 7!y = A, exp

p 1 2K

The value of X is obtained by substituting this expression in �.5!:

�. 7a!

2 U +U !
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Ez +U v-  a +k+s! =02 2

Therefore, the homogeneous solution is:

2 1� � +-
2K � ~

Ul
� !



Finally, to find a particular solution for x < 0, set

�.8!

a'M
�.8a!

2 U +U !

By combining �.6!, �.7! and �.8!, the general solution is obtained, as

f allows,

for x > 0 �.9a!

for x < 0 �-9b!
2 U +U !

To deteraine the values of the constants Al and A2, the two branches of

the solution have to be matched at x = 0. The concentration is continuous
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xU
y =X exp  � +-

p 2 2E ~E

which, by substitution in �.5! yields:

xU2
y=A exp   � � ! exp   ��

2 2E v%

xUl
a'M exp   !exp -�

2E

2 U +U !

xU2
y = A exp  - � ! exp �

1 2Z

xUl
xp  2 ! exp 

2
Ul

+ !



The first condition, y = y , implies
0- o+

a'M
A -A

1 2 Ul
+- a%

Ul
2 Vl+U2!

or,

a' N

12 U1+U2! &c +k!

The second condition, d ~~, impliesd~ dv

0- o+

A   � � +�2 1

1 2E

U  1 1
2Fa' N

2 U +U2! U
+�

2

 
1 1

U2 1
m -P   � +�

2 2E

2Ea'M

2 U1+U2!
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at x = 0 and, since there is no source at this point, the first derivative

also has to be continuous. These properties also hold for the transformed

variable y.



OY~

 A +A2!�

and, by using Eq. �.10!:

a'N U2
�.11!Al+A

2 V +U2! X  sW'+k!

Solving the system of equations �.10! and �.11!, the values of

Al and A2 are obtained:

u'N  

�.12a!A
1

2 U +U�!  s+x'+k!

U2
a'M  

�.12b!A
2

2 U,+U.!  s+ '+k!

After introducing the above into the expressions �.9a,b! and rewriting

the factor  s+a'+k! in the. denominator as

s+a'+k =  

the final form of the solution in the transformed variables is:
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U2
=  A -A2! 2K+ 0

U2
+ ~ !

U
� � !  

U2
+ ~ !



x

exp  2E ! exp  ~e
2  Ul+U2!

xU
X

2E
exp  ! exp 

for x a 0 �.13a!

xU1
exp  2 !exp  g

�. 13b!for x60

+ !

Frora Tables   73 !, the inverse transform is found to be:

x+U2t x-U t

C2 = 2 U"U ! exp - a'+k! t! [-erfc + erfc ]
ghee t

x+U2t x-Ult
exp - u'+k! t! [erj � erf � ]; x ! 0

~4Et ~4Et

a'M

2 U +U2!
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xU2a'M   exp  � � ! exp �2E

2 U '" !

E !! Ul
- � !

2<a

U2
� !
2'

U2
� � !

2~Z



x+U2t -x+Ult
C = U e  - u'+k! t3[erfc  - ! -efrca'M

1 2 ~4Et ~4Et

m'M Uzt x-Ult
= 2 U +U ! exp - 8'+k!tj[ erf � erf, ]; x < 0

1 2 ~4Et ~4Et

the t is, f or all x

x+U t x-U t

C2 2 + exp[- a'+k!t![ erf   ! - erf   !]
1 2 ~4Et ~4Et

�. 14!

 x +U2t! '  x -U t!'
exp [ ] � exp [ ] =0

~4mEc 4Et ~4xEt 4ET

This yields

 x +U t! ' =  x -U t! '
o 2 o 1

i.e. !

Ul-U2
x

0 2
t �.15!
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The location x of the peak of the distribution can be found by differen-
0

tiation:



and the value of the peak concentration is:

Ul+U2

C20  U +U ! exp + +k
cx 'M x 2

1 2 ~4@ t
�.16!

Therefore, the peak concentration at the bottom layer moves at a velocity

U -U1 2, the direction being controlled by the relative magnitude of U and
2

U . By comparing to the velocity U of the peak at the top layer  see Eq.

5.3!, it is seen that the bottom peak is moving much slower, since U and

The functional form of C2 also indicates thatU are assumed about equal.

C = � exp - <x'+k! t! erf   !0.'M Ut
20 2U

�.17!

and x = 0, that is, the highest concentration in the bottom layer remains

stationary at the position of the original source.

The above conclusions were based on the small time approximation

C2    Cl. It is appropriate, at this point, to examine the time scale of
the validity of this assumption, which allows the simplification of the

original equations. An order of magnitude of the desired time scale can be

-104-

the distribution is symmetrical about the peak and very "diffuse" in

character, due to the presence of the slowly varying error functions. This

is, of course, explained physically by the distributed nature of the transfer

of material to the bottom layer through the interface.

In the particular case that U = U = U it is
1 2



obtained from a restriction on the ratio C20/C10 although the two peak

concentrations do not occur at the same point. Por small arguments �0!

2 ~ �! X
�n+1! n!

nO

Keeping only the leading term  n=O!, Eq. �.3.7! becomes approximately

C = exp - a+k! tj
a'M 2 Ut

20 2U
ver ~4Et

and therefore,

C20 e 'Nt/ ~4mE t
= 6 t

10 N/~4vrEt

Requiring that C2 /C < 5X implies
20 10

< 0.05/G' �.18!
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Eq. �.18! indicates that the time scale of the validity of the approximate

solution increases in inverse proportion to a'. This could be intuitively

expected, since the smaller the diffusion through the interface, the

lower the concentrations in the bottom layer.



5.2 1-D Continuous In'ection

The steady � state solution under continuous release of a constituent

at a point is of great practical interest, since it reveals the kind of

impact of such sources as sewage outfalls or power plants, which operate,

more or less, on a continuous basis. The problem, in the case of counter-

flow, is described by the following set of equations:

dC d~C
U = E � � kC + a~ C C ! + R

dx dx~ 1 2 1 1
�.19a!

dC d C2
�.19b!

1 dG1 d Cl
C = �, [ a'+k!C + U � � E ]

2 ct' 1 dx dx2
�.20!

Substituting in �.19b!, an equation for C only is obtained:
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where R = m.6 x!, and the other symbols have been defined in Eqs.

�.1a,b!. The layer velocities are assumed here exactly equal; this is

done for two reasons. First, neglecting the net entrainment associated

with even a small difference between U and U is not justified because of

the large time scale required for the system to reach steady state. Second,

by setting U = U = U the mathematical treatment is significantly
1 2

simplified, because odd order derivatives vanish, as will be seen shortly.

Solving Eq. �.19a! fox C, and neglecting for the moment the source

term which vill be treated later through boundary conditions, one obtains:



d C d C

12 g'+k!E + U ] + k�a'+k!C = 0

The corresponding characteristic is.'

E <o" � [2 n'+k!E + U !z + k�''+k! 0 �.22!

with roots:

2  x'+k E + U + 4a >E~ + U4 + 4 a +k EU2
1,3 2E~

These are both positive and, therefore, Eq. �.22! has four real roots,

+-rl, � r3, where

I

1,3 E �. 23!

The general solution of Eq. �.21! is:

C =Ae > +Ae ' +Ae > +Ae
1 I 2 3

where A, A, A, A are constants to be specified through the boundary

conditions, which the layer concentrations and their derivatives have to

comply with.

As in Section 5.1, distinction must be made between the regions x ! 0

and x   0 because of the exponential terms that grow without bound as



~ x ~ ~ ~. Consequen tly, the solution f or C is:

�.24!

C = A e ~ + A e
l 1 3

x<0

Using these expressions in Eq. �. 20!, one obtains for C2.

C = �,   u'+k � Ur - Er !A e ~ +  e'+k � Ur � Er !A ex x

2 OL l l 2 3 3 4

x2 0
�.25!

C = $  m'+k+Ur � Er !A e ~ +  m'+k+Ur -Er !Ae ~ !;
2  x l l l 3 3 3

x<0

be satisfied:

 i! Continuity of C at x = 0, i.e.

�. 26! C ! =  C
0- o+

From �. 24!

�.ZV!Al+A3 =A2+A4
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For matching the solutions at x = 0, the following conditions must



F -F. =m
out in

dC dCl
i.e.  UC � E ! �  UC � E ! = m

and, taking into account �.26!, this yields:

dC dc

  !dx o- dx o+ E �.28!

Using �.24!

1Al + r3A3 � rlA2 r3A4! E

oz

 A +A ! + r  A +A4! =� �.29!

 iii! Continuity of C at x = 0, i.e.

�. 30! C2! =  C2! +

f rom �. 25!

 a'+k-Er !  A -A2!+Ur  Al+A2!+ Ct,'+k-Er3 !  A3-A !+Ur3 A +A4! = 0

�. 31!
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 ii! Due to the presence of the source in layer 1 at x = 0, the first

derivative of C is discontinuous at that point. Mass balance per

unit time over an infinitesimal length dx  Figure 5.2! implies.'



 iv! Continuity of the first derivative of C at x = 0, since there is no

source in the bottom layer:

�. 32!

Differentiating �.25!, we obtain

1 1 1 2 1 2

+  a'+k-Er3 !r  A +A ! + Ur  A -A ! = 0 �. 33!

Solving the system of equations �.27!, �.29!, �.31! and �,33!~ the values

of A 1 A2 A3 A4 are f ound to be

Um m g,'+k UA � 2  2! + 2   2- 2!   E + K2 � r3 ! � 34a!1 2E rl -«3 E rl -r3 rl

A
Um

+
m   � + � � r !a'+k U 2

2 2E2 r 2-r 2! 2E r 2-r ! r E E2 3
l 3 1 3 1

�. 34b!

�. 34c!A 3 2K2 r 2-r 2!
1 3

2E r 2-r 2! r

�. 34d!
2E r -r ! r

Substitution in Eqs. �.24! yields:
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dc 2 dC2  '! =   '!
dx dx

0- a+

Um

4 2E2� 2 r 2!
1 3

  a+k U 2!
E E2 1

  <X'+k U 2!
E2 ]



Um r3x r yx
Cl 2Z, r , r ,!   !

1 3

m a'+k U -rex -r3x
+   � + � ! r e -re !2E r 2-r3~!rlr3 E E2 3 1

1 3 1 3

m -r3x p -r gx+2E ,2, !,,  rle '-r3e '!
1 3 1 3

for x> 0

Um r gx zgxCl � 2   !  e -e !
1 3

m a'+k U r>x r3x
2E r 2-r 2!r r E E~ 3 1

m   3 r>x g r>x!
2E r 2r 2!r r 1 3

for x ~ 0

These can be written in a compact form as:

m cx'+k U' -r,lxl -r,!xi
C12E�2!  EE2! r3e-rle!r -r3 rlr3

! -r, x  3 -r,fxI!rl e -r3 e

+  sing x! 2E2  2- 2!  e ' e ' !Um -r,jxj -r,~xj
2E  rl -r3 !

2 z k�+'+k!
l 3 E~

The expression for C finally becomes

and further simplified by multiplying the first term by and using
1 3

rl+r3
the fact that



K
 o,'+k!r rl 3 + l r e ra Ix!-r e ri lx!

l 2 r ~r ~! k�Q'+k! E l 3

U

l 3

1 3

�.35!

where r ,r are given by Eq. �.23! .

Substituting this expression for C in Eq. �.20! and after several

algebraic manipulations, the solution for C is obtained as follows:

�. 36!

o + oo

M = [ c dx + I c dx

+ � ]  � � � ! -,,  � !!
2 r -r ! k�ct,'+k! E r r 2K r -r ! r r
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Eq. �.36! shows that the distribution of C is symmetrical about x = 0,

where its highest value is achieved. This would be also the case for Cl

in the absence of advection; indeed, Eq �.35! indicates that the only

distinction between x > 0 and x < 0 is associated with the appearance of

the velocity U. However, symmetry characterizes the bottom layer at any

advection rate and it is certainly due to the exactly equal and opposite

layer velocities.

The total mass present in each layer at steady state is of particular

interest. This can be obtained by integrating each concentration distri-

bution over x. Thus,



which reduces to

  x '+k! m
1 k �a'+k! �. 37!

Similarly

0 +  X>

M2 C2dx + C2dx =

2k�a'+k! ~r-r r r
1 3 3 1

i.e.

cL m

2 k   20. '+k! �. 38!

The total mass in the system is, of course

M-M +M � +
1 2 k� x'+k! k� x'+k! k

�. 39!

1

M a '+k 1+k/o, ' �.40!

thatis, always less than unity and decreasing as the ratio of decay to

the interfacial diffusion coefficient increases.
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as expected, since at steady state the rate of input m must be equal to the

total decay rate kM. Moreover, the ratio of the two masses is:



5.3 2-D Continuous In'ection

BCl B Cl B ClU O' = E B 2 + E B�2 -kcl+9' C2-Cl! �. 41a!

BC2 B C2 BC2
-U = E 2 + E 2 � kC2 � a' C2-C !Bx Bx2 By 2 2 2 1

�.41b!

The unavailability of boundary conditions along the x- or y-axes, which in

fact are part of the solution, sti]1 poses a serious difficulty in a

formal mathematical treatment. In this section a heuristic approach is

undertaken for obtaining an approximate solution of Eqs. �.41a,b! under a

continuous input m per unit time at  x=0, y=0! in the top layer. The

contribution of the longitudinal dispersion term is considered negligible

compared to the advection term in similar one-layer problems �6! and

therefore only transverse dispersion will be taken into account. Provided

the entrainment is small, the steady state solution for the top layer

should be very close to that of a single layer, i.e.

C = e~[-~m U

~4xEUx
4Ex

 a '+k! �. 42!

�.42a!x<0C = 0
1
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Having examined the main features of the problem in the one-dimensional

case, it is desirable to obtain an analytical solution in a two-dimensional

flow field. This is easier attainable under steady state conditions,

since the time variable is eliminated. The appropriate equations for

uniform counterflow U and isotropic dispersion E in both layers are:



The above solution may be thought of as derived from the transient solution

of �.4la! for a load mdt:

C = exp [ � ~ �   x'+k! t jmdt

~4~Et
4Et

by replacing the time t by x/U, i.e. the distance travelled from the

source at xW to x=x divided by the velocity o f travel.

Consider now a stripe of unit width in the bottom layer, parallel to

the y-axis  Figure 5.3!. This is moving at a velocity U at the direction

of the negative x-axis. At each x-position it collects from the stripe

directly abave it  in the top layer! an input of o'C per unit time � or
1

<x Cl
per unit width, that is, for the whole stripe. Whatever comes dawn

from a particular top layer stripe has then a certain distribution, as

given by Eq. � ~ 42!, multiplied by �. This distribution will continue
6

8 m exp[ ~ � �x-x! jU a'+k

U ~4   ! 4E�x-x! U

Therefore, taking into account contributions from all x:

min o, x!

2U a '+k
exp t 4E�x-X! U

�x-x!]dx �.43!
n'm
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to expand at the same rate E while the stripe in the bottom layer moves

from x back to a certain position x. A particle released from the source

at x=0 has travelled a distance x in the top layer and then  x-x! in the

bottom layer. By analogy to Eq. �.42!, the contribution coming from x

of the top layer to the steady-state concentration at x of the bottom layer

must be:



 a! Top Layer

 b! Bottom Layer

Figure 5.3 Concentration Distributions in 2-D Counterflow Case
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The lower limit of integration is based on the following considerations:

if x 2 0, all x > x have a positive concentration C and give a contribu-
1

tion. However, if x < 0, contributions come only from x > 0, since

C = 0 for x < O,according to Eq. �.42a! . Further, by substituting

2x-x, the limits of integration become:

for x < 0: x = 0 ~ z = � x

forx>O: x=x~z=x

i.e., always z = ~x~

The above integral may then be written:

 x m v U  x'+k
C exp[ � � z]dz

2,x
U 7rEUz

4Ez U
�.44!

u '+k
C

2
exp  � z! dz

2U~4xEUX U

m +k
By setting z = z, one obtains:

2 U O~+k
~4xE U

U

exp -a! ! ~
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Xt is evident from this equation that the bottom layer concentration

distribution is symmetrical about x 0, as was the case in the one-

dimensional problem.

For the particular case that y = 0, that is, for the x-axis, the

integration �.44! can be easily carried out. Dropping the overbar from x

and considering x > 0:



i. e.

erfc   � x !+k0 m

CU~

Since the distribution is symmetrical about x = 0, we may write in

general

erfc   ~ x~!O

SU~
for y = 0 �. 45!

The presence of the complementary error function in the solution indicates

that the distribution in the bottom layer falls off rather rapidly with

distance from the source.

When y f 0, the integral of �.44! is much more difficult to evaluate.

Tn general, a numerical integration scheme can be employed to obtain C at

certain points for given values of. the parameters. The main purpose here

being to provide an idea of the behavior of the soluti.on, an approximation

to the integral in terms of simple functions is desired. This can be

obtained by expanding the exponential term and keeping only the three

leading terms:

2U 2U j 2Uexp  � ~! "- l � ~+ �   ~ !
4Zz 4Ez 2 4Ez

�.46!

This approximation will slightly overestimate the result, since the first

term neglected is negative, therefore it is conservative. Of course,

its validity is restricted to the case that

2Uy U
4Ez
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Comparisons of all three analytical solutions derived in this Chapter

were made to results of the numerical model for verification purposes and

are presented in Chapter 9.
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CHAPTER 6

SENSITIVITY ANALYSIS

Irrespective of errors introduced in the numerical computations,

an issue which is often not given the proper attention is that of

parameter or input uncertainty. No matter how accurate the solution

of the equations representing the mathematical abstraction to the

natural process is, it can be no better in reality than the inputs

used to generate it.

In the dispersion problem the basic parameters of interest are the

velocity field, the dispersion coefficients, the decay and entrainment

coefficients. The values assigned to the parameters may be obtained

through theoretical considerations, field experiments, past exper-

ience, etc. There is always some uncertainty about the proper values

to be used in any particular problem. The question that arises is.

Is it worthwhile to resort to a highly accurate and expensive numerical

scheme when some of the relevant parameters are known, say, only

within an order of magnitude? The answer depends on the sensitivity of

the solution to the value of the uncertain parameters.

The great practical importance of sensitivity analysis is that it

reveals how the solution changes relative to changes in the parameters.

By identifying the most critical parameters, the engineer can focus

his efforts on determining them as accurately as possible, while not

worrying too much about the remaining parameters.
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6.1 One-Dimensional One-La er Flow

6.1.1 Instantaneous Source

The solution to the convection-diffusion equation for an

instantaneous source of strength M is

M exp [-
~4~Et

%Et
� kt]
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Systematic sensitivity analysis can be easily carried out when

an analytical solution exists. This happens under simple flow condi-

tions only. However, the conclusions on the relative importance of

the various parameters should be essentially the same in more

complicated situations. Numerical experimentation can, of course,

be used, but this is far more costly and less revealing than the

simple analytical expressions.

In the following sections, the parameter sensitivity af the

solution to some basic one and two-layer dispersion problems is

studied. In particular, the sensitivity of the two most significant

features of the solution i.e., the peak concentration and the extent

 length, width! of the plume, is examined. With respect to the latter,

since theoretically the concentration goes to zero only at an infinite

distance, two definitions can be used: The "relative" extent of

the plume is defined such that the concentration at the edge is a

certain percentage  say 1X or 5X! of the peak concentration. The

"absolute" extent is defined such that the concentration at the edge

is a certain prescribed value; for example that imposed by existing

environmental standards.



The peak concentration at time t is

M
C exp  -kt!

~qmE t
�. 2!

It is seen that the magnitude of C is independent of the velocity,
0

which, however, determines the location of the peak  at x=Ut! .

Differentiating with respect to the dispersion coefficient yields

o M  kt
C

0
2E

or,

6C 1 6E
C 2 E

0

�. 3!

 8 << 1, constant! or

 prescribed!

either i! L, where C = 8C
0

ii! L , where Ca'

In the former case L can be found from
r

2

r
exp

kate

This leads to
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where 6 denotes a differential change in magnitude. Equation �.3!

implies that a 10X increase in E would cause a 5X decrease in the peak

concentration and indicates a moderate sensitivity of C to E.
0

The distribution �.1! is symmetrical about x=Ut. As shown in

Figure 6.1, the half-length of the plume at that time can be defined as



Table 6.1

Parameter Sensitivity for 1-D Instantaneous Injection

Note: t* is given by Equation �.7!

L L.,

Figure 6.1 Typical Distribution after an Instantaneous
Injection in l-D Flow
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L 1
4Et kn�

8
�.4!

It is seen that L depends only on E and the choice of b. Furthermore,
r

L

wz
j 4't gn � 2E

�. 5!

or,

indicating that the relative plume length would increase at half the

rate of an increase of E.

In a similar way, one finds that

I C
4Et Rn�

�. 6!

C~4vrEt

which, of course, has meaning only when C > C. Of interest is the
0

maximum value that L will ever reach. This can be found by

2
differentiating L  or L ! with respect to time and setting the

a a

derivative equal to zero. Thus, one obtains:

kn
M 1

= � + 2kt

C~4mEt
�. 7!
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3L
r

3E

6L

L
r

1 hE

2 E



which, unfortunately, has to be solved for the time to maxL bya

a trial and error procedure. Substituting �. 7! in Equation �.6!

yields:

�. 8!maxL
a

In the particular case of no decay, Equation �.7! can be directly

solved for t, giving

!Pe
M

ee~e~E

and consequently, from Equation �.8!

meC

�. 8a!

which is independent of both E and U and is only related to the value

of C.

In the more general case, when k ! 0, the sensitivity of the

maximum length of the cloud to the values of dispersion and decay

coefficients can be found by employing partial differentiation on

Equation �.6! and using Equation �.7!. The resulting expressions,

along with the previous sensitivity results, are summarized in

Table 6.1.

6. l. 2 Continuous Source

The steady-state solution for a continuous input m  units/sec!

atx=Ois �6!:
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c = e~  �  v+ ~v+ 4kB!l
+ 4kE

�. 9!

where

- for downstream  x. > 0!

+ for upstream  z < 0!

The peak value occurs at x = 0;

C

~+~~
�.10!

Employing partial differentiation;

6C 6E

E
�. 11!

2 2
1 +- U

4kE

C

2

4kZ
6C

C
0

�.12!

1 +�
4kE

1 6k �. 13!
2 P k

1 +- 4kE
C

0
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Comparing �.11! to �. 3! shows that the peak concentration is

less sensitive to changes in E for a continuous source than for an

instantaneous injection. As the non-dimensional parameter U /4kE
2

increases, the peak tends to become increasingly sensitive to the

velocity magnitude and less sensitive to the dispersion coefficient.



This should be expected, since a large value of U /4kE indicates

that the process is advection-dominated.

For typical values in estuaries and coastal waters:
-5 -1 -1

k= 10 sec  wlday !U -" 0.10 m/sec, E = 10 m /sec,
2

U /4kE = 25
2

o 25 6U
C 26 U

o

1 hE

C 26 E
0

Ld
exp[  U � U + 4kE]

2E

which yields

2E ln 8 �. 14!L
dr

U � U + 4kE
2

-128-

which indicates that advection is the critical parameter and a

misjudgement in the value of the dispersion coefficient has a

negligible effect. This insensitivity to even. an order of magnitude

change in the dispersion coefficient in cases of continuous releases

has been observed in the past �0!.

The distribution �.9! is illustrated in Figure 6.2. The

downstream length of the plume L , where C = 9C , can be determineddr' 0

f rom



Table 6.2

Parameter Sensitivity for 1-D Continuous Source

*
Note: 0 U /4kE

L~ L�.L., L

-129-

Figure 6.2 Typical Steady State Distribution for a
Continuous Source in 1-D Flow



Differentiating with respect to E:

6L dr ! 1
Ld 2

]- 6E
2 E

� �+ � !
4kE

�. 1S!

Noreover, differentiating with respect to U:

dr 1 6U
�. 16!

and with respect to k:

6Ld
2

dr

�.17!
2 k

� + 4kE!

L

C � errp[  U � U + 4kE! ]xP 2E
U + 4kE
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Evidently, the sensitivity of the plurne length depends again on the
2value of U /4kE. For large values of this non-dimensional parameter,

the coefficients of 6E/E and 6U/U tend to zero and unity, respective-

ly. For U /4kE ~ 0, these coefficients tend to 1/2 and zero,2

respectively. A similar analysis can be carried out for the upstream

length of the plume, L , which is, nevertheless, always smaller
ur'

than L , becoming equal when U = 0.
dr'

The absolute downstream length, defined by a prescribed

concentration C, is determined from



i.e.,

C U + 4kE
ln

2E �. 18!L
da

U � U + 4kE
2

Par ti al di f f eren ti ation yields

bL a fl 1
L 2

da

1 1 gE

2 U2 CU 4kE E
�+ � !ln  � 1+ � !

4kE

�.19!

da 1 1 bU
L [ + ]

j 4kB kkE!  CU ~4kR!
U

2 2 m
U U

2

�.20!

magnitude  because C « C for the analysis to have some
0

meaning!, Equations �. 19! and � ~ 20! indicate that L is less
da

sensitive to E and U than L . Another non-dimensional parameter
dr

enters here, namely CU/m. A very small value of CU/m, associated

with a low prescribed level C, makes �.19! and �.20! approach

�,15! and �.16!, respectively.

The sensitivity results obtained in this section for the case

of a continuous in!ection are summarized in Table 6.2 and presented

graphically in Figure 6.3.
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As the value of the logarithm is always negative and usually large in



0.5

0,0

-0. 5

-i,o Fi ure 6. 3
' g . Sensitivity Curves for 1-D Cor � ontinuous Source
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6. 2 Two-Dimensional One-La er Flow

6. 2.1 Instantaneous Source

The concentration distribution for an instantaneous source

of strength M in a two-dimensional flow field is given by:

 x- !t! ~ -vt!2 2

4E t 4E t
X

�. 21!
~4M t ~47rE t

X

The peak concentration at time t is located at  x=Ut, y=Vt! and has

a magnitude, under isotropic conditions  E = E = E! of:
X y

C = exp  -kt!
M

o 4xEt
�. 22!

It is seen that C is independent of the velocity, which, neverthe-
0

less, defines its location, as in the one-dimensional case. The

distribution is symmetrical around the peak  Figure 6.4! and can

be expressed as:

2

C = C exp - !
0 4Et

�. 23!

where r=O refers to  z = Ut, y = Vt!. The radius at which the

concentration drops to a certain fraction g of the peak is then

determined by

R = 4Et ln�
1

r 8
�. 24!
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which is similar to �.4!. Partial differentiation of �.22! and

�.24! with respect to E and k reveals the sensitivity of the peak

and the cloud radius to these parameters, as tabulated in Table 6.3.



Table 6.3

Parameter Sensitivity for 2-D Instantaneous Injection

Note: t+ is given by Equation �.26!

Figure 6.4 Typical Distribution after an
Instantaneous Injection in a
2-D Domain
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The radius at which the concentration drops to a prescribed

value C    C ! can be found from:
0

R
M a

C =
4mEt

exp  - � � kt!
4Et

i.e.

�.25!R
a

ln 4 E ~ = 1 + 2ktM

4mEtC
�.26!

which has to be solved, in general, by a trial and error procedure.

In the case of no decay, Equation �.26! is simplified to:

M

max 4meEC
�. 26a!

Substitution in �.25! yields

max R
a ~e|!

and consequently the maximum area is

2 M
max A = m.max R

a eC
�. 27!
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To find the maximum area which will be subjected to concentrations

higher than C, partial differentiation with respect to time is used,

as in Sec. 6.1.1. The corresponding time has to satisfy the

following equation:



6R
�

R 2
a

1 bE

H E
ln � kt

4mEtt,'

�. 28!

and

a 1 kt 5k
R 2 N ka  ln 4 ~! -kt!4mEtC

�.29!

At the time of max R, Equation �.26! holds. Then, the abovea'

expressions are simplified as follows:

a max j. ka EEER
�0. 28a!

2 1+kt ER a Emax

1 kt bk
2 1+kt k

~ajax

R aRmax
�0. 29a!

The results of this section are summarized in Table 6.3.

-136-

This is independent of any of the flow characteristics and

depends only on the source strength and the choice of C. Of course,

the dispersion coefficient controls the time to max A, according

to �.26a!, while the location of the cloud at. that time is

determined by the flow velocity. In a Rime-varying flow field the

average velocity during the time given by �.26a! can be used.

Incidentally, solving �.27! for C and substituting in �.25! allows

determination of the dispersion coefficient; this method has been

used in conjunction with observations of the visible radius of smoke

puffs in the atmosphere �4!.

To determine the sensitivity of R at any time, one obtains
a

from Eq. �.25!:



6. 2. 2 Continuous Sour ce

The solution for a continuous source of strength m, assuming

the flow is along the x-axis and neglecting the contribution of

longitudinal dispersion, is �6!:

2

exp - ~ � � !U kx

4Ex U
�. 30!

~4mEUx

valid for x > 0.

At the origin, the value of C is infinite, and hence there

will be no attempt to examine the peak concentration in this case.

Moreover, no "relative" dimensions of the plume can be defined

here ~

m kL
C exp  - � !

~4xEUL

i.e.

kL K
ln

C ~4EEUL
�. 31!

In the special case of no decay, this can be solved for L directly,

giving

-137-

Obviously, the shape of the plume will be elongated along

the x-axis, even under isotropic dispersion  Figure 6.5! ~ The

"absolute" length of the plume L, where C = C, can be found after

taking into consideration that the furthest point longitudinally

will lie on the x-axis, having y = 0. Equation � ' 30! then yields:



Table 6.4

Parameter Sensitivity for 2-D Continuous Source

Note: a = kL/U; A is given by �.36!

Figure 6.5 Typical Steady State Distribution for a
Continuous Source in a 2-D Domain
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2

L

4' EUC

�. 31a!

C~4TrEU ~ kL

After some algebraic manipulations, one obtains:

2kL

5L U bU �. 32!
L 2kL+1 U

U

6L 1 bE

L 2kL E
U

�. 33!

2kL

U bk
2kL k1 +- U

bL L �. 34!

It is seen that the only parameter controlling the sensitivity of

the plume length is kL/U. For any particular problem, this is

known, after L has been determined from �.31!. A small value of

kL/U indicates high sensitivity of L to the dispersion coefficient

� 139-

but, in general, Equation �.31! requires a trial and error solution.

Even when L is not available explicitly, its sensitivity to the

various parameters can be determined by differentiating �.31!,

rewritten in the more convenient form:



and low sensitivity to decay, while the opposite is implied by a

large kL/U. It is worth noticing that, unlike the 1-D case,

an increase in dispersion results, according to �.33!, in a de-

crease in the plume length, due to higher lateral spreading. An

unusual behavior is indicated by �.32!: the coefficient of�
6V

U

m W U w
C = exp[-

84>EUx
4Kx U

w

However, x is yet unknown. Setting x = 1L and solving the
w w

equation for W:

2 4EAL � m kXL
W =  ln !

C~4mEURL

Using Equation �.31!, we obtain further:

W = [ �-A! � � lnA'12 4EL> kL
U U

�. 35!

3W
The value of A can be determined from the condition that � = 0.ax=

This implies
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becomes zero at 2kL/U = 1 and negative when 2kL/U drops below unity.

Thus, if 0   2kL/U   1, the plume length tends to decrease with

increasing velocity. The behavior of �.32! to �.34! over the

range of values of kL/U is shown in Fig. 6.6.

In addition to the max length of the plume, its maximum

width is also of interest. Denoting that by W  Figure 6.5!,

will be



0.5

0.0

Figure 6.6 Sensitivity Curves for 2-D Continuous Source
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2eL

U



lnA = � �-2X!-�kL 1

U 2
�. 36!0<X<1

This can be solved by trial and error and will obviously give

as a function of kL/U only, i.e., X = A kL/U! . Rewriting �.36!

as

].nA +�
1

1-2X�
2

kL

U

it is clear that, as kL/U becomes large, A tends to 1/2. On the

other extreme, Equation �0.36! shows that, for kL/U = 0, X = 1/e

0.368. The variation of K, as shown in Figure �.6! is found to

be very small over the range of values of kL/U. Eliminating inc%

between �.35! and �.36!:

W2 2ELA �X kL + 1!
U U

�. 37!
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To examine the sensitivity of the width W to the parameters of the

problem, it will be assumed for simplification that X = constant

and only the variability of L will be taken into account.

In view of the very small variability of X discussed above,

this is a good approximation, especially for kL/U > 1, when K is

essentially equal to 1/2.

By partially differentiating �.37! with respect to E, U, k

and using Equations �. 32!, �. 33! and �. 34! for the derivatives

of L, we obtain



6W 1 6U

W � 2kL U
1+A

�. 38!

kL

U 6E6w

W �. 39!2kL E

U

kL

U 6k
2kL k

U

6w

W
�. 40!
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These expressions show that, again, the non-dimensional ratio kL/U

controls the sensitivity of W, in addition to that of L. In the

above formulas either the exact value of 3 for a particular kL/U,

obtained from �.36!, or simply the value X = 1/2 can be used.

The sensitivity behavior of the width W for various kL/U is also

shown in Figure 6.6. At large values of kL/U the width becomes

insensitive to the velocity magnitude, while it is moderately

sensitive to both the dispersion and the decay coefficient. On

the contrary, at small values of kL/U the width is highly

sensitive to the velocity but not to the other parameters.

The results of this section are summarized in Table 6.4.



6.3.1 1-9 Instantaneous Source

When the top layer is loaded with an amount M and the inter-

facial transport is small, the approximate transient solution,

developed in Section 5.1, is:

 x-U t!
2

Cl = e~ I- �  a'+k! t]
~4T[Et

�. 41!

~ t x-U t

C2 � <"~ exp[ �  u'tk! t] [er  � � erf ! �.42!
~4Et ~4Et

valid for

�.43!t < 0.05/c['

The top layer concentration, C , behaves as in a single layer, with1 t

� 144-

Having examined the sensitivity of the solution in the one-

layer case, this section will focus primarily on determining the

sensitivity of the results in two-layer systems to variations in

the magnitude of interfacial transport as well as identifying

possible dif ferences from the behavior of one-layer syste!!!s. Since

analytical solutions are available only under very simple flow

conditions  see Chapter 5!, the analysis will be necessarily

restricted to those cases, with the expectation that the basic

conclusions will hold in more general situations. In the

following sections the main parameter of interest will be the

interfacial diffusion coefficient a'. All two-layer results are

summarized in Table 6.5.



some additional loss through the interface. The peak concentration

in the bottom layer occurs at x= U -U ! t/2 and is equal to
1 2

 U +U2! t
C20 U +U

2 2~4Et
�. 44!

Partial differentiation with respect to a' yields:

dc 20  , ! 6a'
C20 a'

�. 45!

Equation �.45! indicates that the sensitivity of C to m' is

highest at t=O and decreases with time. Due to the restriction

�.43!, the coef ficient of 6m'/a' in �.45! stays above 0.95 for

the time range of validity of the approximate solution. On the

contrary, the respective change in the peak top layer concentration

with respect to a' is given by

6C
t � v

C10 a'
�. 46!

C = o,'My � exp[- a'+k! t]Te
20 zE
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This is quite small, since m't < 0.05. Indeed, the small-time

approximation of Section 5.1 is based on the assumption that inter-

facial mixing affects C very little.

For the small times for which �.44! is valid, a further

approximation may be made by setting erf y = 2y/vier. Then



and consequently,

20 1 5E

C20 2 E
�. 47!

C2 ! C, the equation

oR L+Ut L-Ut� exp[ �  g+k!t][erf  ! - erf  !] = C
~4Et ~4Et

has to be solved by trial and error ~ However, at least for

small times, C2 « C and therefore there is no point in pursuing
1

further the examination of the extent of contamination in the

bottom layer in this case.

6.3.2 1-D Continuous Source

The steady state solution for a continuous source of

strength m at x=0 in the top layer has been given in Section 5.2.

The resulting expressions for Cl and C are rather complicated and

an analytical sensitivity analysis will not be attempted here.

Nevertheless, the final distribution of mass between the layers can

be easily examined. According to Section 5.2, the mass in the top

layer is

 a'+k! m
k �nr+k!

�. 48!

while in the bottom layer

It follows that the bottom layer peak is moderately sensitive to the

dispersion coefficient but independent of the velocity magnitudes.

To find the length of the plume in the bottom layer, having



a'm

2 k�m'+k!
�. 49!

6a �.50!~1 ~I
�+ � ! �+2 � !

k k

M

2 1

N2 1+2
k

�. 51!

It is seen that the ratio of interfacial diffusion to decay is the

controlling non-dimensional parameter. As that ratio increases,

N tends to become insensitive to changes in a'. However, M

is insensitive to the interfacial transport rate at either very

small or very large values of a'/k. The highest sensitivity of M

is attained at a'/k = 1/v2, corresponding to

5N
-0.172

M

which is still rather low.

Looking now at the ratio N /M , given by

M

M >'+k
�. 52!

one obtains
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To determine the sensitivity of this mass breakdown to the value of

one has to employ partial differentiation to the above

expressions. The results are:



This further confirms that the distribution of the constituent

between the two layers is not sensitive to the interfacial transport

rate, provided thi.s is at least moderately higher than the decay rate.

In the case of a very low value of a'/k, however, the overall mass

distribution becomes highly sensitive to the value of the inter-

facial diffusion rate; this is due to the sensitivity of M2, i.e.,

the mass of the bottom layer, which is all gained through the inter-

face . The behavior of Equations � .50!, �.51! and � .53! is

shown in. Figure 6.7.

6.3.3 2-9 Continuous Source

The approximate steady-state solution for a continuous source

in the top layer of a counterflow is given in Section 5.3. For the

top layer the solution is essentially the same as for a single

layer and the conclusions of Section 6.2.2 apply. The bottom layer

concentration along the x-axis is given by:

eric ~x~ !; y=0c SU~
�.54!

The peak concentration, at  x 0, y=0! is

�. 55!
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to a' for large values of a'/k, but not for a' k    l.

The above results as well as the sensitivity of C and I
r

ta the velocity and dispersion coefficient are summarized in Table

6.5. Elaboration in determining the plume width from the general

expression of C given in Section 5.3 is not justified in view of

the very approximate nature of that expression and the restriction

of its validity to a narrow range of y only.

In concluding this chapter, some important points should be

emphasized. Firstly, as the previous analysis has indicated, the

significance of the various parameters in determining the peak

concentration and the dimensions of the area affected by a pollutant

source depends on the problem  i.e., continuous or instantaneous,

1-D or 2-D, etc.!. Within each class of problems there is a

non-dimensional combination of the parameters which governs the

behavior of the above mentioned plume measures. In particular,

in two-layer steady state problems the ratio of interfacial

diffusion to decay rate is of basic importance, with respect

to concentrations in the layer with no source.

In mast cases, the dispersion coefficient seems to be less

critical to the results than the velocity magnitude. In a complex

circulation field the velocity direction must also be of importance,

controlling the direction of motion of the plume, on the average .

In this context, the advantage of the two-layer formulation is the

more detailed description of the velocity field. A relevant

question is, of course, that of the uncertainty of the velocity
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Table 6. 5

Parameter Sensitivity in Tvo-Layer Systems

Nate: o = m'/k
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field used. This has to be tracked to the circulation model or

measurements used to provide the velocity inputs and is beyond the

scope o f the pres ent work.

It should be clear that the conclusions reached on sensitivity

strictly apply for marginal changes in the parameters only. A

large change in any parameter may significantly change the value

of the non-dimensional ratio controlling the sensitivity; neverthe-

less in regions where the sensitivity curves are leveled off, even

the effect of large parameter changes can be readily predicted.
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CHAPTER 7

THE FINITE ELEMENT FORMULATION

7.1 The Weak Form

The governing equations �.11, 2.14! for each layer have the following

f orm:

Bt Bx
� + �  uC! + �  uC! = � � Q � � + PBC B � 3 � 3 3

ay Bx x By
�. 1!

where

Q =-E H � -E 8�Bc Bc
K XX Bx xy By

�.la!

Bc BcQ=-EH � -EH�
y xy Bx yy By

and P includes sources, decay and exchange between the layers. The

boundary conditions are  Figure 7. 1! .

i! Essential, i.e, the concentration is specified on the boundary

segment S
c

�. 2a!C=C* on S
c

�.2b!Q =Q* onS
n n

In seeking an approximate solution G, the partial differential equation

�.1! along with the boundary condition �.2b! are transformed to an
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ii! Natural, i.e. the normal concentration gradient or, equivalently, the

normal dispersive flux is specified on the boundary segment S



Figure 7.1 Solution Field and Boundary Conditions
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expression to vanish:

<BC B c! B ~! B a �p}
Bt Bx By Bx x By "y

A

+  Q* � Q! Wds =0
n n

�. 3!

The trial function C, is required to satisfy the essential boundary

condition �.2a!, and the weighting function to satisfy the homogeneous

form, i.e., W = 0 on S
c

Employing partial integration, i. e., writing

  � Q!W= �  QW! - QB B BW
Bx x Bx x x Bx

  � Q!W = �  QW!�B a BW

By y By y By

and applying Gauss ' theorem,

r  Q W! + � � W!} dA = Q WdS
Bx x By n

Eq. �.3! is transformed to

BC B -- B BW BWR = [  � + �  uC! + �  vC! � P }'W � Q � � 0 � ]dABt Bx By x Bx y By

+ Q*WdS =0
n

�. 4!

S

-3,56-

integro-differential equation by multiplying with a weighting or test

function W, integrating over the total domain, and requiring the resulting



R=Z R =0
e

�.5!

The solution variable, here the concentration C, is approximated in each

element by a trial function, which interpolates between the concentrations

at certain points in the element. Thus, the continuous problem is trans-

formed into a discrete problem with the concentrations at these points as

the unknowns. Depending on the form of the integral equation, the trial

functions have to satisfy certain continuity conditions  l3! The

simplest element for a two-dimensional domain is the triangle. The admiss-

ibility of simple piecewise continuous trial  and test! functions allows

-15 7-

Since Eq. �.4! involves only first derivatives of C, the trial

functions can be simple piecewise continuous functions, which require only

continuity of the function itself within the domain. Also, since the

equation involves only first derivatives of W, the test functions have the

same requirement as the trial functions. Eq. �.4! is called the "symmetri-

cal weak form". Transforming �.3! to �.4! makes it easier to find a

solution because simpler trial functions can be used. However, uniqueness

of the solution is harder to prove. According to Wang and Connor  86!,

the symmetrical weak form is the optimum form, constituting a balance

between existence and uniqueness of the solution, and allowing C and W to

be chosen from the same solution space. The application of the finite

element method is thus facilitated.

In the finite element method, the domain is subdivided into smaller

areas, called elements, and the total residual R, evaluated as the sum of

the element residuals, is required to vanish:



the use of linear interpolating functions within the triangles, resulting

eventually in transformation of �.3! to a set of ordinary differential

equations with the values of concentration at the corners of the triangles

as unknowns.

The finite element formulation for this simple case is outlined in

the next section  see also Leimkuhler �3! !. Various other element shapes

as well as interpolation functions can be used. A great advantage of the

finite element method is that the basic formulation remains the same,

irrespective of the specific type of approximation employed. Another basic

advantage of the finite element method, a consequence of the division of

the domain into individual elements, is the capability for easily handling

spatial variability of properties or parameters. Finally, the finite

element discretization is well suited for the description of irregular

boundaries, common in coastal ~ater bodies, and has great flexibility in

providing variable spatial resolution, as may be desired.

7.2 The Finite Element A rozimation

Using a local coordinate system for a triangle  Figure 1.2!, the

concentration expansion corresponding to a linear interpolation is written

as

where



Figure 7.2 Local Element Coordinate System

z  <!

 o!

Figure 7.3 Local. Boundary Segment Coordinate System
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The matrix form is

C=NC
�-6!

where

and

C

e
2

C = C

C3

= �  k + b x + a y!1

1
2 2A 2 2 2

�. 7!

=1- g � E
3 1 2

where

1 2 "31 3 2

�. 8!
2 3 12 1 3

b3 yl y23 2 1

A = �  b a � b a ! = the area of the triangle1 �.9!

while k, k2 are constants of no particular significance.
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the superscript  e! denoting element property throughout this chapter.

The following relations hold between the local and global coordinates,

provided the nodes are numbered counterclockwise �3,93 !:



The boundary segments are handled similarly  Figure 7.3!:

22

or

C =NC
b

where

- E  6,!

b 1
C

C2

and

2 1

eFor a fixed grid, N is invariant with time, while C is independent of

space for a given element. Therefore, the derivatives of C can be

expressed as

e

� = N
Bt - dt

BN

C
Bx Bx �. 11!

BN
� = � C
By By-

The derivatives of N are found from �.6!,
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3N
l

[b b b j = bBx ~e I 2 3 ~e�

as:

�. 13!

Bf 3f i 1 Sf
K Z a

The following integration formula  93! is useful

r *' 2 3  X+pe+2! .'
A

�. 14!

For X = p = 1, u = 0, this simplifies to:

ij 1 for i = jwhere 5 the Kronecker delta

for i/g0

The test function i.s taken to have the same form as the trial function.
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These are special applications of the general chain-differentiation rule,

through which the derivatives of an arbitrary function f can be expressed



In particular,

V=hC=NAC �.15!

Differentiation formulas similar to �.11! apply for hC as well.

Now substituting back in Eq. �.4!, the weighted residual for one

element becomes

dC
e B B eR = f N � + �  uC! + �  vC! � PjN AC

dt Bx By
A

BN BN

 Q � +Q � ! h,C jdA+ Q * N hC dS
x Bx n

S e

or, by rearranging:

dc

R  h.C!  N d -P!+ hG! F �.16!

where

N = NN dA �. 17a!

e T B B
BN BN

P [N  P � �  uC! � �  vC! + Q + O ]dA
Bx By Bx x By y

�. 17b!

F = N Q*dS
n

S

�.17c!

on S
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Of course, the boundary term enters only for elements that have a side



The matrix H is time invariant and depends only on the geometry ofe

the element. Using �. l4!:

N = N N dA= 42  f1� K3! dA=
A A

�.18!

The P vector includes the contributions of the advective, dispersion and

source/sink terms. Using the approximations

e
u=Nu

C=NC

we obtain

3N BN
3 � - e e e - e

�  uC! = � u NC +N u � C
3x Bx � -- - � Bx�

BN BN
e - e e - e

=NC � u +Nu � C
Bx Bx

�.19!

BN
e e

Because C , u , � are independent of space,
Bx

BN BN

N 3  uC!dA=   NNdA! C 3 u +   NNdA!U � C
A A A

Similarly

3N BN
N �  vC!dA =   N NdA ! C � v +   NNdA!v � C

A A A

2

A
1

12

1

1 1

2 1

1 2



Hence, the contribution of the advective terms can be expressed as:

T B 3
N   �  uC! + �  uC! ! dA =

Bx By
A

2 1 1
1 -e -e

= � �  bu+ av !
24

1 2 1  ub+va!C

1 1 2

e e
-A C

V
�. 20!

Noting that bu + av is a scalar, it is seen that the first part of the
-e -e

"advection" matrix A is symmetric, but vanishes under unifor~ flow

conditions, since Zb. = Za. = 0.
i i

The contribution of the dispersion terms is given by:

BN BN
 ; Q + - !dA=-', b'Q +a' !

A

�.21!

where Q, Q are obtained by expanding �.la,b!:x'

C e� � aH !
H

E
 bC � � bH ! �  aC � � aH !e C e vv e C e

2A' 2A

The dispersion coefficients are treated as an element property and assumed

constant within each element. Por simplicity, instead of expanding the

ratio C/H, its average value over the element may be used, i.e.

-165-

E
xx eQ = � �  bc

X 2Ae

2 1 1

1 2 1 C
e 1

24

1 1 2

E
� � bH ! � ~  aCC e xv e

H
2A



C - C 1� =   � !
H H av 3 1 Hi

Thus, the dispersion term takes the form:

1 T T 1 T�  b Q +aQ! = � �  E bb+E b a+E ab+E aa! CT T T e

2 x
4A

e mc- xy» HAT

+   � !  E bb+E b a+E ab+E aa! HHav<e xx--4A xjj» yy--

= � K C +   � ! K H �.22!

b bH =b  bH ! =b  b H+b H+b H! =0

b aH = a bH = a aH = 0
T e T e T e

and the last term in �.22! vanishes.

eThe remaining part of P contains the distributed source and sink

terms, as well as interfacial transport between the layers. The contribu-

tion of a linear decay term -kC over the element is

NkCdA= � NkNCdA= � k   NNdA! C

A A A

=-kMC =- DC
ee ee �. 23!
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In the particular case that the layer thickness is constant over the domain,



Assuming a linear distributed source,

2 1 1

1 2 1 R S � 24!

1 1 2

N RdA=   NNdA!R 12
A A

ewhere R denotes the sources at the element nodes, if any.

Finally, the interfacial transport from layer 2 to layer 1 is given by

cl+ c2
Q =  w � w! +s c - c !

e
Q21 = " Q21

we ob tain

+ ff q aa = <ff I Mac!q' = + x'q' = E*'
A A

�.25!

where Q21 is the vector of interfacial fluxes at the nodal points and thee

plus and minus signs apply to the top  sub. 1! and bottom  sub. 2! layer,

respectively. This treatment of the interfacial exchange term is similar
e e

to that of a distributed external source. However, unlike R, Q depends

on the layers concentrations and has to be updated as they change during

the solution process.
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Because w and e depend on the layer velocities, they are variable over
e

space and time and it is convenient to work here with the overall quantity

Q21 Setting



If there is no net entrainment and if o, is considered constant

over the element, the expression for Q2 simplifies to

C2 Cl
Q =a c � c! =u  � � � !
2l 2 1 H2 HI

Assuming Hl = H2 = H yields an additional simplification,

Q2 = a' C � C ! = O,' NC � NG !

where  x' = e/H. Finally,

= + a'   N NdA ! C2 � C !
A A

= + e'M  C � C !
-2 -1

=+E C � C!
-2 -l

�.26!

Summarizing, the vectors are:

P= � AC-KC+  !KH-DC � E*+S
-2 -2 -2 -2 -2 H av -2 -2 -2 -2 - -2

P =-A C � K C � D C +E  C -C !+S
-1 «1 -1 -1 -l -1 -1 -. -2 -1 -1

�.28a!

P= � AC-KC-DC � E C � C!+S
-2 -2 -2 -2 -2 -2 -2 - -2 -1 «2

�. 28b!

where the various matrices are defined in Eqs.   7.20! through �.25! .

When the thicknesses and a' are constant, Eqs. �.27a,b! reduce to



* = N Q

and obtain

2 1

�.29!

Kq. �.5! states that, for each layer, the sum of weighted residuals

Z  hC !  M C � P + F ! = 0

Formally carrying out the sumNLation, we obtain the system equation:

hC  MC - P + F ! = 0

Since AC is arbitrary, the parenthesis must vanish, i.e., for each layer:

-l-l -1 -1 -1 �.30a!

�.30b!

If P , P are expressible by �.28a,b!, the system equations can beV

written as'.

bC +AC +KC 1+   2 1 1V V
�.31a!

bM2C2 + A2C2 + K2C2 + D2C2 + E C2 � Cl! = S2 � F �. 31b!
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With respect now to the boundary terms, we set

Fbe   NbTNb dS ! Q
V n 6

S

where R is the length of the boundary segment.

of the elements is required to vanish:

~ b
"2'2 '2 2 � '2

~be
-n



7.3 Time lnte ration Strate

The general form of the equations �.30a,b! is more suitable for

discussing the time integration scheme. These equations constitute a set

of ordinary linear differential equations with the nodal concentrations of

the two layers as unknowns. The trapezoidal rule is used to integrate in

time.

M C � C ! = �  P + P !l,t+At l,t 2 -l,t+At l,t
�. 32a!

A

  2,t+t 2,t 2 -2,t+At -2,t �.32b!

Since Pl <, P2 < depend on C <, 2 <, these equat ons
constitute an implicit scheme and are solved here by iteration. The values

of CjC2 along with the loadings and velocity inputs at time t deter-
-lit 2,t

A th
mine P, P .To obtain initial values of P and P, the

concentrations Cl ~ , C2 < must be given initial guesses. The

simplest approach is to set
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This form of the equations is convenient for subsequent analysis of the

numerical approximation, since all concentration-dependent terms are

directly expressed in terms of the concentration vectors and constant

 that is, not depending on cencentration! coefficients  see Chapter 8!, Qf

the matrices involved in �.3la,b!, the geometrical matrices Ml, M2 are

usually equal, since the discretization is the same for both layers.

Although practically important, the case in which layers do not extend

over the whole domain is not considered in this work.



where the superscript in parenthesis denotes the iteration index. Then,

new values of C < , C2 > are determined from.'

�.33a!

 i+1! he -~ " i!
-2,t+5t 2,t 2 2,t+ht 2,t � 33b!

The geometrical matrix M is time invariant and therefore has to be computed

and inverted only once. This is of major importance in practical problems

with significant time variability. A. direct, non-iterative solution for

htC < would involve the inversion of matrices of the form M + 2  K+A+D+E!
H H

all terms in the P vector and employing the iteration procedure, maximum

flexibility in handling time variability of any or all of the relevant

parameters and loadings is achieved. Moreover, the most general case of

non-linear decay, dispersion of other terms can be readily handled in this

way. This is particularly significant when there is interfacial exchange
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in each time step, which increases the cost of the solution considerably.

In the transient case, the flow field as well as the concentration varies

with time. The latter determines the advective terms, the interfacial

transport coefficients and, in general, the dispersion coefficients.

In addition, sources and boundary conditions may vary with time. By lumping



which "links" the layers and makes very difficult the exact solution of

even the simplified Eqs. �. 3la,b! . However, the iteration strategy

requires a restriction on the time step.

In practice, the iteration continues until there is little change in

concentration between the current and previous values. A tolerance limit.

has to be specified and compared to some measure of deviation of current

nodal values from the previous ones. Thus, the iteration at ttht is

considered to have converged adequately when, for each layer separately:

 C i+1! c i! ! g
j,t+ht j,t+ht

�. 34!Tolerance

�+1! 1/2

j, at
all

odes

P>, P2 depends on both Ci and C2 as well as the velocities
 i+1!enhance the rate of convergence, the updated value C>

 i!calculate P2 > . The scheme is Illustrated below.'

Ul, U2. To

is used to

~ >! P"  !   +!!

 i!  i+1!
-2,t+ht ~2,t+Atc

-2, t+h t
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where j = 1,2 refers to the layer index. An upper limit on the number of

iterations at each time step may be also imposed, so that the solution

proceeds to the next time step without satisfying �.34! .

In the absence of interfacial transport, Eqs. �.33a! and �.33b! can

be solved separately. With interfacial transport, each of the vectors



This procedure can be readily generalized for an arbitrary number of layers.
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CHAPTER 8

STABILITY AND ACCURACY OF THE NUMERICAL SCHEME

In the previous chapter the finite element approximation to the problem

was presented and the method of solving the resulting set of linear

differential equations was discussed. As in all numerical models, two

important issues relevant to the usefulness of the numerical approximation

are the stability and the accuracy of the numerical solution. The former

is normally associated with the selection of the time step in problems

where time integration is required. Explicit schemes, i.e., determining

the value at the next time directly from values at previous times, always

need a restriction on the time step for stability. This is not so for

implicit schemes, e.g, iterative formulations, some of which may be stable

for any time step  depending also on the problem! . Since the cost of the

solution is directly related to the timestep, efforts are always made for

devising more stable schemes. There are also other factors limiting the

time-step which depend on the particular problem and the objectives of the

model. For example, if it is desired to study the effect of tidal varia-

bility on the dispersion of a pollutant, the time step should at most be an

order of magnitude smaller than the tidal period, so that enough resolution

is provided.

The accuracy of the numerical solution, although in general may depend

on the time step, is mainly associated with the space discretization. The

relation of the grid size to the parameters of the problem and the particular

form of the function to be approximated control how close the numerical

solution can be to the true solution. Of course, the true solution cannot
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be known except in simple cases, where analytical expressions are available.

Starting from such simple cases, approximate general criteria can be derived

which give an idea of the accuracy of the approximation in a particular

problem and suggest ways for improvement. Rapidjy varying boundary condi-

tions, sources, or other forcing terms are often sources of inaccuracies

and sometimes instabilities for otherwise well-behaved schemes. In parti-

cular, with respect to the convection-diffusion equation, inaccuracies

originate from the fact that a fixed grid is inherently not suitable for

describing a moving plume which has high concentration gradients� especially

near the edges and near localized sources. Evidently, the accuracy of the

approximation increases as the grid becomes finer but this is achieved at

the expense of higher costs due to increased computer time. Clearly, there

is a trade � off between economy and accuracy considerations While it is

not feasible to eliminate inaccuracies totally in the solution, it is

possible to restrict them within acceptable limits.

In this chapter the stability and accuracy characteristics of the

finite element solution strategy are discussed. Because interfacial mixing

is usually small, the behavior of a single layer is of basic importance

and is presented in detail. Before examining the finite element method,

some background from familiar finite difference schemes is considered

f irst.
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8. 1 Back round from Finite Dif ference Methods

Bc Bc 3 c� +u � =E
3t 3x Bx2

it can be seen that a typical Fourier component of the solution is of the

form   82!:

C = C exp[ � k Et + ik x-ut! j
T 0

where k is the  real! wave number and C is the initial wave amplitude.
o

Approximating  8.1! by using central differences in space and forward in

time  Euler method!, one obtains:

C n+1 C n Eht  C n+C -2C. ! � A  C � C
j j hx2 j+1 j-1 j 2h,z j+1 j-1

 8. 3}

where the subscript is used as the space index and the superscript as the

index. The solution of Eq.  8. 3! has the form

C. = C A exp ikjhx!
j o

 8. 4!
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Most common finite difference schemes used for solving the convection-

diffusion equation have been investigated extensively with respect to

their stability and accuracy characteristics, in the search for devising

better numerical approximations. Formal mathematical analyses are usually

restricted to the case of constant parameters and deal mostly with the

simplest one-dimensional case. An excellent review on the subject is

presented by Roache   70 ! .

Considering the one-dimensional convection-diffusion equation



Substituting in  8.3! yields

1 + 2  cos kbx � 1! � i sin kbx
Ebt ubt

bx2 bx
 8. S!

n+1 nBecause c = Xc., the coefficient A is called the "amplification

factor" and is, in general, complex. To ensure stability as the solution

proceeds in time, X must satisfy the Von-Neumann condition

C n+'

c."
 8.6!

which implies that a perturbation introduced into the system is bounded'

From Eq.  8.5!

f l + 2 2  cos kbx � 1!j + [ sin kbx]
bx2 bx

This indicates that for any wave number k, stability is controlled by the

two non-dimensional groups Ebt/bx and ubt/bx, involving the parameters of

the problem and the time and space discretization used, When   70!

ub,x
E

 8. 8!

2

2E
 8. 9!

Eqs.  8.8! and  8.9! imply

b,t  
2E
LL 2

 8. 10!

and further
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the max value of X occurs for khx = vr which yields the stability criterion



C n+ - C n � �   E~ C n+ + C n+ 2C n+ ! � ~  C + - C n ],
j j 2 ~h,x j+1 j-1 j 2hx j+1 j-1

b,x~ j+1 j-1 j 26x j+1 j-1  8.12!

Substituting Eq.  8,4! in Eq.  8.12!, the expression for the amplification

factor is

1 � >  cos khx � 1! + i 2< sin khx]'ukt

hx~ 2hx

= 1 +  cos khx � 1! � i 2> sin khxEh.t uht
5x> 2hx

Then

1 � �   1 � cos khx ! ] +   sin khx !El t ukt 2
hx~ 2hx

Eht ukt 2
1 + g ~   1 � cos khx !] +   2A sin ~x !hx~ 2hx

 8. 13!

Since cos kAx ~ 1, Eq.  8.13! indicates that X   1 for arbitrary ht and

the scheme is said to be unconditionally stable ~
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which is analogous to the Courant condition in circulation problems.

However, when  8.8! is not satisfied the maximum value of X is always2

larger than unity and therefore  8.8! is necessary for stability of this

particular scheme.

Approximation  8. 2! is an explicit scheme, which is conditionally

stable, provided the time step satisfies  8.9! and  8.11!. A simple

Implicit scheme is obtained by using the trapezoi«1 rule for time integra-

tion of  8.3.! .



wave magnitudes  numerical diffusion!

b! Phase errors, i.e. incorrect speed of propagation of the waves

 numerical dispersion! .

Setting t = ~t and x = j5x, the exact solution  8.2! becomes

C = C [exp  -k EAt! ] exp[ik j5x � unAt! ]
T 0

= C [exp - khx! ~ ! ] exp [ikhx j � n ! ]2 Eht n Mt
0 hx 5x

The approximate solution obtained by the Euler method is given by  8.4!,

where A is defined in  8.5! .

Setting

A.=pe  8. 15!

Eq.  8.4! takes the form

C = C p exp[i kjhx � ne! ]
j o

= C p exp[ikhx j � n ! ]
n .. 9

0 khx  8.16!

From Eq.  8.5!, the modulus p of X is
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Even though a particular approximation may be stable, the solution

may still be far from the true solution. Viewing the latter as a set of

waves propagating downstream and diffusing according to Eq.  8.2!, there

are two types of errors introduced by the approximation:

a! Amplitude errors, i.e. either excessive or inadequate damping of the



p = [� + 2 �  cos kdx � 1! .! +   sin kh,x} ]Eht ub,t 1/2
Axz hx

 8. 17!

and the phase 6 is

ukt
sin khx

5x
0 = arctan  8. 18!

1 + 2  cos kAx � 1}EQt

Axz

By comparing Eqs.  8.14} and  8.15! it is seen that the ratio of the

approximate to the true magnitude in one time step is:

f  khx, �, !
Eht ukt

exp -k>EAt! 1 ' Axe ' hx
 8.19}

and after a time t = nest

n

exp -k~Et} 1
 8. 19a!

On the other hand, the ratio of the distance travelled by the approximate

solution to the real one in one time step is expressed as'.

e/ka,x e Eat
uht/hx kit 2 ' Axe ' hx

 8.20!

Eht @Atz and which are of significance in stability considerations, also
b,x Ax

control the accuracy of the numerical approximation. Of course, the ideal

case of fl = 1 and f2 = 1 for all k is never possible, since it character-
izes the true solution itself. The amplitude error may, in general, be
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and apparently remains the same after time t = nest.

Although the forms of fl and f2 depend on the particular approximation
employed, it is important to realize that the two non-dimensional groups



considered more important because of its exponential growth with time.

Methods with no amplitude error do exist for simple convection  E = 0! .

Indeed, the simple trapezoidal scheme for E = 0 yields  from Eq.  8.12!!

1 +   sin khx!
uht 2
B,x

Mt
1+   sin x! 2

hx

of  8.3! in Taylor series about the point C., the following differentialn

equation is obtained:

3c 3c uht 3c� + u � =  E � ! � + higher order terms
3t 3x 2 3x2  8.21!

This indicates that, instead of  8.1!, a different equation is solved and,

in particular, a spurious diffusivity has been created

u ht
'a 2  8.22!

Stability requires E > E, which is equivalent to  8.10!, since otherwise
a

the solution would grow exponentially. But, even if that is satisfied,

the reduction in the effective diffusion coefficient is a source of

inaccuracy. The artificial diffusivity of other finite difference

schemes has been examined by Roache   69 ! . A compact expression for first

order space differences and a forward time difference is   3 !
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for all k, indicating that a unit wave propagates without any spurious

damping. This is characteristic of time-centered approximations of the

advection equation   53 !, which are consequently called "neutrally stable".

An alternative way of expressing the artificial damping caused by the

numerical approximation was introduced by Hirt   29 ! . Expanding all terms



E = � [� � 2y! hx � uh t]
a 2

 8. 23!

where

y = 0 for backward space differences

y = 0.5 for central space differences

y = 1 for f orwar d space differences
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It is clear that E is always negative in this case, thereby reducing the
a

magnitude of the actual diffusion coefficient. It is also seen that E isa

smallest for backward dif ferences, which may explain their popularity in

steady flow problems.

The term in  8.23! associated with ht is eliminated when steady state

is considered   69 ! . It also vanishes when time centered schemes are

used. Then, the choice of central space differencing completely eliminates

the artificial dif fusion coefficient. Any amplitude error remaining should

be small and is related to the higher order terms of Eq.  8.21! .

As discussed earlier, it is possible to have no amplitude error in

solving the equation of pure convection. However, phase errors can never

be total]y eliminated   31 ! . Fromm   23 !, reviewing first and

higher order approximations in the search for devising a method of reduced

dispersion, concludes that most finite difference schemes have lagging

phase errors. In view of the previous discussion, this simply means that

f   1 in Eq,   8.20!, indicating that the approximate waves lag the true

waves. But, in addition, most schemes exhibit a larger phase error in the

larger wavenumbers  i.e. higher frequencies! . This dif ferential error

between the components of the solution causes   23 ! an upstream



steepening of some initial distribution shape being convected downstream,

which may even lead to the appearance of spatial oscillations. The

addition of a diffusion term is the convection equation, apart from changing

somewhat the phase errors, acts as a damping mechanism with a higher effect

at the large wavenumbers. Thus, the diffusion term helps in smoothing

out the distribution and moderating the ef fects of numerical phase disper-

sion by suppressing the contributions of the most erroneous wave components.

Phase errors are, of course, irrelevant when only the steady-state

solution of  8.l! ls desired. Accuracy in this case is associated basically

with the smoothness of the solution, which is associated with. the ability

of the grid to handle steep concentrations gradients, such as those

occuring in the vicinity of a continuous source. The parameter , theMK

so-called "grid Reynolds number" is found to be of fundamental importance,

when a central difference approximation is used   70 ! ~ In particular,

condition  8.8! has to be satisfied for the smoothness of the exact

solution of the difference analog  8.2!

8.2 Anal sis of a Re lar Finite Element Grid

For a single layer, the finite element approximation Leads to the

following matrix equation:

MC + AC + KC + DC = S

Neglecting decay and source terms and employing the trapezoidal rule for

time integration, Eq.  8.24! takes the form:

N C -C ! + �  AC + KC + AC + KC ! = 0  8. 25!

-L83-



� Cn+ + Cn+1 + Cn+ + Cn+ + Cn + C + + Cn+ ! +
A B C D E F G

+ 6 x �C~1 � Cn+1 Cn+1! + 6 ~ �Cn+ � C"+ � C"+1!E ht E ht

hs~ A C F hs~ A B E

+ uht n+1 n+1 n+1 n+1 n+1 n+1

+ h   � 2Cn � Cn Cn + 2Cn + Cn+ Cn+ !
E ht

�CA+C +C +C +CE+C +C! -6 ~ �C -C -C!hs~

6E ht

vht
hs B C D E F G

 -2C - C +C +2C +C � C!  8.26!

where >, v and the x,y components of mean velocity  the overbars are

implied throughout this chapter! and E, E are the x,y components of thex' y

dispersion tensor  E is neglected here for convenience! .
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where A and K are considered constant for the. purposes of the following

analysis and the subscripts n, n+1, refer to times t and t+ht, respectively.

The techniques for studying stability and accuracy of finite difference

equations, discussed in the previous sections, can be employed to Eq.  8.25!

onIy when the finite element grid is regu1ar, such as that shown in Fig.

8.1. To examine node A,the contributions from the six adjacent elements have

to be considered. Assembling the individual matrices, defined in Section

7.2, and taking into account that the area of each element is A = hs /12,e

Eq.  8.25! becomes:



Figure 8.1 Example of a Regular Grid

Figure 8.2 Definition of Angles for an Arbitrary Triangle
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By analogy with  8.4!, set

C . =C X exp ik! Ax+ ik! Ay!
o

x y
x x

 8.27!

Introducing this expression into  8.26! yields:

A [6 + 2 cos k As + 2 cos k As
x

+ i [- 2 sin k As + 4 sin k As + 2 sin k As + k As!]+At
As X x X

+ i [- 2 sin k As + 4 sin k As + 2 sin k As + k As! jjvAt

6 X x y

i � [- 2 sink As+4 sink As+ 2 sin k As+k As!]UAt
As X x y

� i � [ � 2 sink As+4 sink As+ 2 sin k As+k As!j. vAt

As x x y

Concentrating now for simplicity on t' he one-dimensional problem  v = 0,

k. = 0, k = k!, we obtain:y ' x

� + 2 cos kAs! � 6  l � cos kAs! � i3 � sin kAsEAt uht
As~ As

 8.28!
� + 2 cos kAs! + 6 > � � cos kAs! + i3 A sin kAsEAt uAt

S2 As

This is written as

 8. 28a!
9+ y+ j5
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E At

+ 6 z � � 2 cos k As!
Asz x

[6 + 2 cos k As + 2 cos
y

E At

6 > � � 2 cos k As!As~ X

+ 2 cos k As+k As!]
x y

E At

+ 6 ~ � � 2 cos k As!
As

k As + 2 cos k As + k As!]
x x y

E At

� 6 � � 2 cos k As!
s2



where

4 + 2 cos khs

Eht
6 � cos Ms!

b,s~  8. 29!

6 = 3 sin kAs
u~t
As

It follows that

since cos khs   1, y ! 0 and therefore

which means that the scheme is unconditionally stable, for any value of ht.

It is important to notice that in the absence of diffusion  E = 0!,

g2 y $2

indicating that a unit amplitude wave will propagate retaining the same

magnitude. Thus, the scheme is neutrally stable for simple convection.

The presence of diffusion enhances the stability by making the value of

less than unity.

8.2.2 Am litude Errors

~C ~ = C exp - k Et! = C exp[- khs! n ]2 Edt
T 0 0 h,s2
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The presence of amplitude errors is easily investigated by the methods

discussed in Sec. 8.1. The true solution is still given by Eq.  8.14!, with

hs in place of hx, and its magnitude is at time t;



The magnitude of the wave propagated through the finite element grid after

the same period of time is:

where 9, y, h are defined by  8.29! . Using those values, the ratio

lc�l~lcTI is expressed as:

CT

 8. 30!

It is seen that, just as in finite difference methods, the accuracy of the

EAt uA tapproximation depends on the values of the basic parameters A > and
As~ As

Table 8.1 lists the amplitude error committed after n = 100 timesteps for

uAt EAt
some wave modes for = 0.1 and several values of � , along with the

As As~

TABLE 8.1

Amplitude Error After 100 Time Steps, for uAt/As = 0.1
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n  kA EAt uA t!
1 ' As2 ' As

true amplitude lC l, relative to its original value C
0

n

exp   khs! ]As~



Errors in low frequencies are certainly more important because they

are damped less strongly in the true solution. As seen from Table 8.1,

lover frequencies exhibit the best behavior with respect to amplitude

errors and it may be readily seen from Eq.  8.30! that ~C ~/]C ~ approaches

unity as khs ~ 0  i.e., for very long waves!. It is also seen that, for

the values of Eht/hs listed, the damping in the approximation is stranger

than what it should be. A smaller diffusion coefficient that would eliminate

this error can be determined for a particular frequency by solving  8.30!

with f> = 1, by trial and error. Considering the approximation of a wave by

linear expansions, it may be argued that a reasonable description requires

8 to 10 grid points per wavelength. Consequently, the highest relevant

frequency that can be modeled is

 khs! = � or IT

max 4 5

For the highest frequency, as above, actual limits can be set on Eht/hs

and uht/hs so that the error will not exceed a speci. fied value  say 10X!

for a prescribed number of time steps   82 ! .

It can be shown that for the regular grid of Fig. 8.1 there is no

spurious diffusivity introduced through the approximation of the convective

terms. The proof simply involves expanding all concentrations of Eq.  8.26!

in Taylor series about node A. For the one-dimensional case and E = 0, the

equation reduces to

� +u � =03c Bc

3e ax

indicating again that the finite element approximation af simple convection

is free of artificial damping. This conclusion was also derived earlier
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 IXI = 1! and is due to the fact that the finite element approximation is

essentially equivalent to central difference schemes, with spatial accuracy

of order hs

8.2.3 Phase Errors

In the case of linear interpolation functions and for one-dimensional

flow on the regular grid, the complex amplification factor K is, from

Eq.  8.28a!:

5 � .y -0 -i2BdB~i6 [ l3- ! � ih][ 9+ !-i6]
 9+>! + 6z6+Y+i4  8+v! z + bz

Then, the phase 9, def ined by Eq .  8. 15!, is

-IM 296
zRe n pz pz Qz

and the ratio of the approximate to the real phase shift is

12 �+coskhs!sinkhs
uht

Ds6 1
arctan

kuht uh.t
khs

hs �+2coskhs! -36   ! �-coskhs! � 9  � ! s in khs2 Eht 2 2 uht 2 . 2
2 hs

hs

f  kh Eh t uh t !
2 ' hs ' hs
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With respect to the phase error properties of the finite element method,

Orszag   59 ! has investigated the problem of convection in a uniform 2 � D

rotation velocity field. His Galerkin approximation is by means of Fourier

series interpolation, where 8 or 16 terms are retained. The experimental

results show a behavior superior to typical second or fourth order finite

difference schemes, with almost no phase error at all. This is to be

expected, since the Fourier series provide an interpolation of essentially

infinite order.



Table 8.2 lists the ratio 8/kurt in the case of no diffusion  E = 0! . It

is seen that for pure convection the scheme is very satisfactory in terms

of phase errors. The fact that the listed values are smaller than unity

indicates lagging phase errors  i.e., the numerical wave lags the true

wave! . As can be seen from Eq.  8.31!, a positive diffusion coefficient

reduces the value of the denominator thereby bringing the ratio closer to

unity. The sensitivity of the ratio to Eht/hs is larger at large wave-2

numbers, because of the factor �-coskhs! . Thus, the most erroneous modes

are the easiest to improve. A large value of E would eventually cause the

ratio of Eq.  8.31! to increase beyond unity, creating leading phase errors

 i.e. the numerica1 wave leads the true wave! . By trial and error it is

possible to determine the optimum value of Eht/hs such that f = 1 for a
2

particular wavenumber and vent/M. The ratio e/kurt is 1isted in Table 8.3

for Mtgs = 0.1 and for several values of Eht/hs . The optimum value of

the latter is about 0.15 for all frequencies, but in general, the phase

errors are negligible.

TABLE 8.2

Phase Error e/kit for E = 0
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TABLE 8.3

Phase Error 8/kit for eht/hs = 0 .1

8,2.4 S atial Oscillations

The presence of high frequencies in the actual solution, associated

with steep concentration gradients, is of major importance for t' he accuracy

of the numerical approximation. The smoother the solution is, the better

its approximation can be with a given grid and order of interpolation. The

existence of high gradients is the solution of the convection-diffusion

equation is associated with

i! The type of the source, i.e. localized or distributed

ii! The relative strength of the dispersion and advection transport

mechanisms.

In general, the error norm for the approximation of a differential

equation of order 2m by a finite element grid of size hs and degree of

interpolating polynomials k-1 is given by   75 !

 8. 32!

where C is a constant

M denotes the true solution
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is the exact solution of the discretized equations  not includinghs

time integration errors!

~wIk is the magnitude of the k derivative of the true solution,th

which is related to the  k-2m! derivative of the data f.
th

In our particular problem, m = l and k = 2. Therefore, the error is

 x w-w ', w-w '! c'as' ~ wj2 ~ c'as'   f   '  8. 33!

In addition to avoiding singularities, the next important consideration

refers to the ability of the grid to describe the concentration distribution

and. in particular, the steep gradients that occur at the edges of the plume

Eq.  8.33! indicates that the spatial discretization error is of order bs

and, as hs ~ 0, the approximate solution will converge to the true solution.

But this conclusion holds only when f is smooth; when it contains a

6-function, as is the case for point sources placed on a node, the error

becomes indeterminate   86 ! . There are certain techniques far

tackling the problem in the presence of singularities, such as refining the

grid in their vicinity at a rate depending on the order of the singularity,

or including singular functions in the trial functions   75 ! . While

refining the grid around sources is always helpful, the best way in practice

to avoid the problems associated with singularities is to avoid the

singularities themselves. This is done by spreading out the localized

source over several neighboring nodes or elements. Of course, if this is

done, one should be prepared not to expect very good results in the immediate

vicinity of the source. Depending on whether that area is of great impor-

tance, the refinement of the grid and the spatial distribution of the

source should be decided.



under transient conditions ar the vicinity of the source for steady state

conditions. Phile in the latter case the grid can be refined locally to

better handle the strong concentration gradients, this is not practical in

the former case, for the edges of the plume may occur anywhere in the

domain as long as the common Eulerian approach with a fixed grid is

followed. Clearly, a higher order polynomial interpolation is superior to

a linear approximation for describing the gaussian or exponential solutions

of the convection-diffusion equation. The usual result of the inadequacy

of the grid to accommodate steep gradients is the appearance of spatial

oscillations and negative concentrations   84 ! . Considering first a

steady-state one-dimensional problem on the regular grid of Fig. 8.1,

suppose that

i! due to the presence of a source, the concentrations at C and D are

relatively high, C = C = N,

ii! nodes F and G are essentially out of the plume, C = C = 0, and

iii! nodes A, B and E have approximately the same concentration,

CB � CE � CA M

The downstream advective transport at node A, per unit time, is then

expressed as  see Eq .  8.26!!:

 C + 2C + C � C � 2C - C !

while the dispersive transport is

E�CA � CC CF! " � E�CA � M!



At steady state,

+ E�C � H! = 0  8. 34!

and therefore

 8. 35!

Eq.  8. 35! shows that the sign of C depends an the value of ups/E. To

a~oid negative concentrations upstream of a continuous source, at steady-

state, the follow'ing condition has to be satisfied:

E 1

ups 2  8. 36!

n+1 n

l2ps' ~ +2 s +' A ' A -M! =on n+1

ht

which can be rewritten as

C �+ � � ! =C l- � � !+ � M   � � � !n+1 3 Eht n 3 Ekt 3 Mt E 1

A 2 hs~ A 2 Dsz 2 As ups 2  8. 37!
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This is analogous to the restriction on the grid-Reynolds number required

in finite difference schemes, as discussed in Sec. 8.1. Ets applicability

to finite element discretizations has been established through early

numerical experiments on the one-dimensional grid shown in Fig. 8.4   44 !

Under transient conditions, the unsteady term has to be considered.

Assuming the time rate of change of C, C, C, C small compared to that

of C = C = C, the latter being at the edge of the plume, the following

equilibrium equation is obtained from  8.26!:



If CA > 0 and since normally 3 Eht/2hs < 1  see Sec. 8.4!, a negative
n+lC would certainly require the violation of  8.36! . Therefore, a

concentrations.

We attempt now the same kind of analysis for a two-dimensional problem.

Considering the edge of the plume upstream of the source at steady state

and setting

and C = C = C = 0,C "M, CA=CE=CC
0

in Eq,  8.26!, we obtain.

E CA+ A+ 6 A" ~ 6 AxA yA

Then,

A
 8. 38!

6 E +E !
x+~

 u+v! hs
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conservative condition for avoiding negative concentrations in transient

one-dimensional problems is still given by  8.36! .

With respect to the downstream zone of the plume, the above results

are applicable, if u is replaced with -u. It is then seen that there is no

restriction on E/u5s . In conclusion, for a steady flow, the upstream edge

of the distribution is most liable to exhibit negative concentrations, and

these in turn cause a wave-like pattern of negative and positive values in

space, as in finite � difference schemes   42 ! . A short duration

loading is in this respect more favorable than a continuous release, because

the solution of the latter has a steep exponential branch upstream of the

source. In the case of tidal flow, both edges of the plume may conceivably

present oscillations. Condition  8.36! must be satisfied by the highest

tidal velocity in the neighborhood of the source in order to avoid negative



Eq.  8.38! indicates that negative concentrations always exist upstream of

a localized continuous source in a two-dimensional domain. Although the

analysis here is very crude, it should be expected that the two-dimensional

problem will present more difficulties in numerical approximation than its

one-dimensional counterpart. Indeed, the one-dimensional solution for a

point source is finite everywhere, while in the two-dimensional case the

solution is not defined at the source. It is essential that such a source

be distributed over several elements, so that very high peaks are avoided,

i.e. N is not too large in Eq.  8.38! . If, in addition,

E + E
x y l

 u+v! hs 6  8. 39!

the magnitude of  the negative value! CA, obtained from  8.38!, will be suffi-

ciently small to be acceptable in practice. Condition  8.39! is quantita-

tively similar to  8.36! .

The behavior of the downstream end of the plume can be examined again

by substituting  -u, -v! for  u,v! in Eq.  8,38! . One then obtains

A

 u+v! hs

which indicates that C > 0 provided that

E + E
x y

 u+v! hs 6  8.40!

This is less restrictive than  8. 39! .
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8.3 Matrix Anal sis for an Arbitrar Grid

[M + �  K + D + A! ]C = [M � �  K + D + A!]C
2 - - -n+1 2 n

The matrices involved have been defined for individual elements in Sec. 7.2.

The geometrical matrix  Eq. 7.18!

M =NNdA

A

 8.42!

is symmetrical positive definite and the same is true for the decay matrix,

which is proportional to M  Eq. 7.23!:
e

D ~k NNdA  8. 43!

A

The dispersion matrix has the form  Eq. 7.22!

K =  E bb+E b a+E ab+E aa!4 e xx.-- xy yy-
 8.44!

and is symmetric and positive semidefinite. Since the system matrices

M, D, K, are composed of symmetric positive definite submatrices, they also

have this property. The individual advection matrix, defined by  Eq.7.20!

A C = N [ �  uC! + �  uC! ]dA
e e T B B

Bx By
 8.45!

A
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8.3.1 Time Inte ration Stabilit

As indicated in the previous section� the trapezoidal integration

scheme of the finite element equations for a single layer of constant thick-

ness has the form of Eq.  8.25! in the homogeneous case. Including the

decay term, it expands to:



is not symmetric, however, as discussed in Sec. 7.2. Introducing the

continuity condition for steady but spatially variable flow

� + � = 0Bu 3v

Bx By

we may rewri te Eq.  8. 45!

AC = N  u � +v � !dA
e e T BC BC

Bx By
 8.4~a!

A

Integrating by parts and summing over all elements.'

Z A C = Z   N u Cds � �  b u+ a v!CdA!e e T 1 T T

e e n
2A

e
 8,46!

A

where u denotes the outward normal velocity.
n

The concentration is expressed in terms of the nodal values through the

expansion

C =NC

Z A C = i N u Cds � Ze e j' bT 1
 b u + a v!CdA

T T

e n e e
2A e

bT b b BN BNT T

N uN ds C � Z   u+ v!NdAC
n- - e 3x By

S A

 8. 47!
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Since this expansion is required to be continuous across inter-element

boundaries, as discussed in Sec. 7.1. and since compatible velocity expan-

sions are used in developing the circulation field, it is seen that the line

integral vanishes on the interior boundaries. Therefore,



Noting that by introducing the expansion of C in  8.45a! this takes the

form

e e T 3N BN
AC = N  u � +v � !dAC

3x 3y
 8.48!

A

and combining  8.47! and  8.48!, one obtains:

E 4 C = � Z ~A ~ C + i N u M ds C
S

or, for the system matrices:

AC= � AC+ N uNds C
n-

S
q

 8.49!

A = -A
T  8.50!

Kq.  8.50! indicates that the advection matrix in this case is purely

skew-symmetric. This result is very important for a general stability

analysis of the numerical scheme, as will be seen shortly. In addition,

it is seen from Eq.  8.49! that the symmetric part of the advection matrix

is associated with these portions of S where the normal velocity is not

zero. These may represent river or estuary outlets or parts of the ocean

The line integral is restricted to the part of the boundary, S , where the

dispersive flux is specified, because the weighting function vanishes on

the segment S with specified concentration  Sec. 7.1!.
c

Usually, S corresponds to the land boundary and there should be no

velocity normal to it. Then the line integral of  8.49! vanishes entirely

and the equation reduces to



bourrdary where the gradient rather than the concentration itself is

specified. This is commonly the case for outf iowa from the domain of

interest  see Sec. 2.3! . Since u ! 0 indicates flow outwards, such a
n

flow implies a positive value o f the line integral of  8.49! . Setting,

in general,

 8.51!A=A + A
s «SS

 8.52!C = a C
-n+1 � -n

where a the  complex! amplification matrix, analogous to the amplification

factor of Sec.  8.1! . One may set, however

C = X $ , for all n
n

 8. 53!

where $ an arbitrary vector  of the same dimension as C!

Sub s ti tuting in  8 ~ 52!:

or

 a -XI! f> = 0  8.54!

This implies that the expression  8.53! is possible, provided A is an

eigenvalue of the arnplification matrix a.
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where A denotes the symmetric part of A and A denotes the skew-
«s «ss

symmetric part of A, we may now proceed to the examination of the stability

of the trapezoidal integration scheme of Eq.  8.41!.

The concentration vectors at times t and t + ht can be related by

writing



The necessary condition for stabili.ty is   68!:

 8.55a}

or, equivalently

 8.55b}

[M+ �  K+ D+ A!]A f! = $ [M � �  K+ D+ A!]$T ht T ht  8.56!

Since M, K and D are positive definite, it follows that

y M0 = m > 0T  8, 57a!

gD4=d>O  8. 57b!

/K'=~>0  8.57c!

For the advec t ion matrix, A, one can wr i te

P AQ = a + ia
T  8. 58!

where a is related to the symmetric part and
s

a to the skew-symmetric part of A.
ss

Then, Eq.  8.56! yields:

m � �  K+d+a ! � i � adt . At
2 s 2 ss

At
m+ �  Md+a ! + i � a

2 s 2 ss
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Substituting the expression  8.53! for C and C l in  8.41!, and pre--n -n+1
T

multiplying both sides by $, one obtains:



or,

[m � �  v+d+a ! ] +   � a !at

2 s 2 ss
 8.59!g2  y[ 2

[m + �  K+d+a !] +   � a !
At

2 s 2 ss

In the most common case that a = 0, Eq.  8.59! clearly shows that
s

a =<PA/=<P N uNds g
s

it is seen that a has the sign of u . Thus, when the normal velocity is
s n

outwards, a > 0 and Eq.  8.59! still implies that
s

Actually, the stability is enhanced in this case. However, when the normal

velocity is inwards, a   0. Then, the stability of the scheme depends on
s

the relative magnitude of a compared to K+d. In the unlikely event that
s

a dominates, a value of IX ~ larger than unity is implied. This analysis
s

fits nicely with the considerations on boundary conditions  Sec. 2.3!,

where physical reasoning indicated that the concentration gradient should

be prescribed only in outflow boundary segments, while during inflow the
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for any value of ht. That is, the time integration scheme is unconditionally

stable for an arbitrary grid.

The value of a may be different than zero only when there are parts
s

of the boundary where the concentration gradient is prescribed, instead of

the concentration, and the normal velocity does not vanish. Since, from

 8.49!,



specification of the concentrati~n is more appropriate. If this is done,

a > 0 and the unconditional stability is maintained. Further, a small
s

negative value of a, associated with a small inflow boundary segment,
s

should also be acceptable in practice, being offset by the magnitude of

K+d,

8.3.2 Iteration Conver ence

The feature of unconditional stability makes the scheme  8.41!

extremely attractive to use, provided that K, D and A are actually constant.

NC = [N � �  K + D + A! ]C � �  K + D + A! C  8.60!

The condition for the convergence of the iteration is  89!:

If > �,'  K+ D + A!  8.61!

Dropping the subscript, this implies:

2

II ~ ' K+ D+ A!ll
 8.6la!

Since the norm of a sum is less than or equal to the sum of the norms, a

more restrictive condition can be obtained, i.e.

 8. 62!At  

II N AII+ ll < 'Kll+ ll > 'Dll
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When they are variable, however, a new matrix has to be inverted in every

time-step and this would become uneconomical for large problems. Therefoxe,

as discussed in Sec. 7.3, an iterative scheme is employed in this case.

That is, Eq.  8.41! is written as'





and therefore, condition  8.65! is satisfied when

2

  K+d
 ~   ss! 2!l/2  8,67!

Since the scalars in the denominator of  8.67! essentially represent

the eigenvalues of the corresponding matrices, and the eigenvalues are

commonly used as measure of the matrix norm, it can be argued that

/ II rr 'KI 

Il~ 'D

 a /I ~ II W 'A/ 

 8. 68a!

 8. 68b !

 8.68c!

8.4 An A roximate Criterion for the Time Ste

Starting with the definitions of the matrices involved, we will attempt

now to transform the right-hand side of  8.62!, and  8.67!, to an easily
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Thus the restriction an ht imposed by  8.67! is expressed in the same

terms as  8.62!, i.e. the ratios of magnitudes of the matrices involved, as

expressed by their eigenvalue norms. However, it can be readily seen that

condition  8.67! is less conservative than  8.62! .

Yet, nei.ther condition is practical in this form. This is because the

norm expression is rather abstract and the eigenvalues have to be derived

through long machine computations once the matrices are formed Thus, one

does nat have an explicit relation between the time step and the parameters

of the problem, Such a relation is derived in the next section.



i! The Geometrical matrix is

2 1 1

M = � 1 2 1
A

12  8.69!

1 1 2

Therefore

12 1
M

A 4
 8. 69a!-1 3 -1

-1 -1 3

ii! The Dispersion matrix is, for isotropic conditions  E = E = E!:
yy

K = �  E b b + E a a!
1 T T

4A

b + a

blb2+ 1 2

blb3 + ala3

bb +aa

2 2b,+a,

bib 3 + ala3
E

4A  8. 70!b2b3+ a2a3
2 2b3+ a3'2'3+ 2 3
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tractable, though approximate, form. The system matrices appearing in the

previous analysis all consist of sub-matrices associated with the individual

elements of the solution space. The matrix eigenvalues, the most common

type of norms   20 !, can be easily evaluat'ed at the element level.

Provided there are no drastic changes in the grid or the parameters over the

domain, the conclusions reached at the element level can be generalized

for the whole area. In any case, if  8.62! or  8.67! is satisfied for the

"worst" element, stability and convergence of the whole scheme is implied.

Expressions of the element matrices were presented in Sec. 7.2.

Dropping the superscript e for convenience, we summarize below the various

terms:



Noticing that products of the form b b + a.a represent the inner product
i

of As., As. considered as vectors, K can be further written  see Figure 8.2!
i

As -AS1As 3cos e

-As2As3cosel

-As As cose3

As
E

K
4A

-AS As COS63

As As 3cose

 8.708!

As 3AS 2AS 3cos 0 1

iii! The Advection matrix, for uniform flow  u.v!, is:

2 1 1

1 2 1  ub+vd!1
A

24

1 1 2

1

24

Since ub + va can again be considered as the inner product of the

velocity vector and a vector of magnitude As. having the direction of
i

the inwards normal to the element side, the above expression takes

the f orm

[As cosg As cos$2 As 3cos<f! ]2 1 1

A = � 1 2 1
U
24

 8. 7la!

1 1 2

where U =  u + v ! is the velocity magnitude.~ 1/2
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2 1 1

1 2 1

1 1 2

1  u[b b2 b3] + v[al a2 a3]!  8.71!1 2



iv! The Decay matrix is

kA
D

12  8.72!

One may now proceed in formulating the matrix products appearing in

 8.62! . It is first noticed that

12 1
M

A 4
12

A

Due to the fact that each column of K adds up to zero, as seen from  8.70!,

-j
only the first part of the above decomposition of M will give a contribu-

12
M K = � K

A  8. 73!

For an equilateral triangle

hs = hs = ks = hs
1 2 3

8 = e = e = 60'
1 2 3

as'P3

Consequently,

2 -1 -1

12 Ehs

A 8A
-1 2 � 1
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2 1 1

1 2 1 = kM

1 1 2

3 -1 -1

-1 3 -1

-I -1 3

-1
tion to N K; since this is the identity matrix,

1 1 1

1 1 1

1 1 1



The eigenvalues of the matrix are 0,3,3. Therefore, a conservative bound

on At will be obtained by using

 8. 73!

1
A less conservative estimate can be obtained by using for ~i M KIi the

average of the three eigenvalues, bearing in mind that  8.62! is already

more restrictive than the actual condition  8.6la! . Then,

 8. 73a!

Alternatively, for a right triangle

As = v2As,
1

AS2 = As = As
3

e = e = 4s'
2 3

e = 90'

Cons equen tly,

2 -1 � 1

The matrix eigenvalues are 0, 1, 3. Therefore

12EAiim 'K[i = ' 3= 36 �,max 4 l A g! As
4

 8. 74!
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A = � As1 z
2

EAs

4A

12EAs

16

12EA '

s
16

-1 1 0

-1 0 1



while

12EAs 4 16 E
av 4 I > ~! 3 Bs~

4

 8 ' 74a!

The latter is exactly the same as  8.73a! .

Eqs.  8.69! and  8.7la! imply that

1

M A = � � 1 [As cosg As cost[! As cos$ ]12 U

""1

-1
The norm of M A can be obtained as the product of norms of the vector

A

and row matrices in the above expression. Consistent with using eigenvalue

norms for the square matrices, the Euclidean norms of the vector and row

should be used, i.e.

A~j = 2A P3 Asl cos $1 + b,s2 cos $2 + As3 cos  j�  8.7S!

According to Figure 8. 2:

Then, for an equilateral triangle, Eq.  8, 75! becomes:

 I M A~  = ~ v 3' cos Q + 2� cos $1 + 4 sin $1!
2  As !

that is,

 8. 76!
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+ 7r-0

�  ~-e >
3 1 2

~ cos$ = -cos$ cos9 � sin j! sine
2 1 3 1 3

~ cosg = -cos$ cose + sin<f> sin9
3 1 2 1 2



For a right triangle Eq.  8.75! gives

v&s 2cos P + 2  � cos2$ + � sin $ !1 1

1 2 1 2 1
tI~ 'Ajl =

2� hs !

i.e.,

 8. 77!

This expression indicates that the norm is not uniquely defined, but depends

on the orientation of the triangle with respect to the flow. The worst

case is obviously obtained when Q = 0' or 180', i.e. when the flow is

normal to the hypotenuse, yielding

f/M 'xI  8. 77a!

When the flow is parallel to one of the legs of the right angle, it is

= 45' and therefore
l

hs 2 hs
 8. 77b!

which is exactly the same as  8.76! .

Finally it is evident from  8.72! that

 8. 78!

According to the above, the criterion  8.62! can be rewritten in a

variety of ways, depending on the element shape and orientation and the

degree of conservatism desired. Thus, the absolute lower bounds are

given by
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l

f3 U E kf � � + 12 � +�
2 As As~ 2

 8. 79a!

1

3 U E k� � + 18 � +�
2 As hs~ 2

 8.79b!

for equilateral and right triangles, respectively. Although the latter

appears to be stricter, the different definition of As has to be taken into

1consideration. Using the average value of I~ M KI~,the condition becomes

the same for both triangle shapes, provided the flow is parallel to one of

the legs of the right triangle;

1

/ � � + 8 � +�
2 bs As~ 2

 8. 80!

Alternatively, using the same matrix measures in the sharper condition

 8.67!, we obtain

 8.81!

which is, in general, less conservative than  8.80! by at most 40X.

En modeling applications it is usual practice to design the grid with

approximately equilateral triangles, avoiding angles in excess of 90'.

Although a general criterion cannot be given for an arbitrary grid except

in the "abstract" way of Sec. 8.3, it is believed that either of  8.80! or

 8.81! should provide a good starting point for defining the time step in

any given problem. The primary value of these criteria, irrespective of
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the exact numerical coefficients, lies in the inclusion of all relevant

parameters in a single expression. It is seen that the non-dimensional

groups of interest are again EAt/As and UAt/As, while kAt has to be also

considered, if there is decay. So far, the effect of the various parameters

has been examined separately, if at all, and only by numerical experimen-

tation because of the inherent difficulty of a strict theoretical analysis

to proceed to practically meaningful results. Thus, it has been suggested

�4! that for satisfactory time integration using the same iterative

scheme, the folLowing conditions should both hold:

As As
10K and A t 10U

These bounds are significantly stricter than  8.80!, especially with

respect to advection.

Other criteria, given for explicit finite difference schemes, are of

interest in comparison to  8.80! or  8.81! . Some of them were presented

in Sec. 8.1. For 1-9 problems,

Ax
A'' 2Z

Ax
u

2 +
Ax~ Ax

while for 2-D problems,
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2Z  � + !
1 1

hx2 hy>

u v
+

hx hy

1

l 12E  � + ! + � +-
hx~ hy2 hx hy

ht < min < �, ~, j.hx h, Ax
u ' v ' 4E

Using typical values of coastal environments:U = 10 cm/sec,

-I
E = 30 m /sec, k = 1 day, hs = 1 km, condition  8.80! becomes

h t < 2718 sec

while  8.81! gives

ht < 3644 sec

Thus, the restriction caused by the iteration still allows reasonably

large time steps, in view of the desired accuracy of representation of the

tidal variation of the flow field. Usually, the effect of decay is consider-

ably less than that of advection and dispersion, which are, in general, of

the same order of magnitude. It should be mentioned that, in problems

with significant spatial variations, the largest values of E/hs and U/hs

are those limiting the time step. Clearly, a refinement of the grid in a

certain area for better resolution leads to higher values of these ratios

and consequently a smaller allowable time step. 1't may be also seen that,
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in a certain grid, stability problems are most likely to arise during

periods of strong currents, since U/As and also E/As are then larger.

A comparison of  8.80! and  8.81! to time steps actually achieved in

one- and two-dimensional problem, that establishes more confidence in the

simple theoretical results, follows in the next section.

8.5 Ex erimental Results

Conditions  8.79a,b! or  8.80!, limiting the time step, can be written

in the following general form:

HAt
� +p � +M kAt< 1

1 As 2 As> 3
 8. 82!

Considering the non-dimensional parameter UAt/As, EAt/As and kAt as

Carterian coordinates, the inequality  8.82! implies that an "acceptable"

point in that space must be between the plane

� +p � +p kAt=1UAt EAt

1 As 2 As~ 3

2 UAt 8 EAt
As As 2

 8 .83!

Similarly, condition  8. 81! may be written as follows:

�22 ! + 8 ~!~<1  8.84!
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and the coordinate planes. In the absence of decay  which usually gives a

negligible contribution anyway!, the space is reduced to two dimensions.

Using the values of the constants pl, p2 pertaining to  8.80!, one obtains:



While  8.83! determines a theoretically "safe" area on the plane

  A ' � 2! bound by a straight line,  8.84! indicates an ellipticalUht, zh,t
As hs2

boundary which entirely contains the previous area. Thus,  8.84! is less

conservative, extending the admissibility of combinations   ' 2! overUh,t, zb,t
hs ha 2

a larger part of the plane. Both boundaries are drawn in Figure 8.3.

Given the parameters E, U and the numerical discretization ht, As of

a problem, the two ratios can be formed and the location of the point

corresponding to their coordinates can be found. If it lies within the

safe region, there should be no difficulty with the convergence and

stability of the solution.

A large number of runs was carried out on the one-dimensional grid

shown in Figure 8.4 ~ A point source was simulated by loading the three

nodes marked with dots. Nost runs involved continuous releases, but

instantaneous injections were also made. For each run the corresponding

point was plotted in Figure 8.3, in an effort to establish the extent to

which the theoretical result of  8.83! or  8.84! is valid in practice. In

the same figure, the line E/Uhs = 1/2 is drawn. This represents the

theoretically lowest ratio, below which negative upstream concentrations

cannot be avoided in one-dimensional problems  Eq.  8.36!! .

In Table 8.4 the various symbols used in Figure 8.3 are explained and

the classification of runs is made with respect to the iteration convergence

behavior and the presence or not of significant spatial oscillations in

the solution.
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J,OO 0.0
I.OO

Figure 8,3 Comparison of Theoretical Bounds on the Time Step with 1-D Runs
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TABZ,E 8.4

Definition of Symbols Used in Figures 8.3 and 8.6

The most important conclusion from Figure 8.3 is that all runs that

exhibit more or less serious problems with respect to iteration convergence

lie outside the "safe" region. Actually, not too far from the elliptic

boundary there are points representing runs that rapidly became unstable.

Points closer to that boundary, but still outside, generally present

iteration convergence errors of 20 to 75K, decreasing more or less slowly

over time. Since there is a limit of 30 iterations per time step in the

program, we cannot say whether these runs would eventually blow up, if

allowed to continue iterating. Apparently, when the iteration is stopped

with a small error, the behavior tends to improve over the next time steps.



tD00

Figure 8.4 One-Dimensional Finite Element Test Grid

Figure 8.5 Two-Dimensional Finite Element Test Grid
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Of course, these errors are accumulated in the solution. Runs between the

two boundaries defined by  8 ~ 83! and  8.84! present, interestingly,

"acceptable" errors of less than 10K, which actually are rapidly diminish-

ing in subsequent time steps. Finally, runs within the inner boundary

generally converge very easily, with errors less than lX. It appears also

that � since the time step increases along rays originating from the origin,

for constant values of E, U, hs � slightly better time steps can be achieved

in the interior rather than close to the axes, especially the advection

axis. This may just indicate a slight bias of the theoretical criteria;

however, these do not seem to be too conservative in view of the relatively

large errors involved in the runs outside the boundaries. On the other

hand, certainly the extreme conditions  8.79a,b! are too restrictive.

The other important result of the experiments is associated with the

accuracy condition  8.36! . It is seen that the line E/Uhs = 1/2 exactly

separates the regions where runs do or do not show appreciable upstream

negative concentrations and spatial oscillations. These oscillations

become more severe near the x-axis, as the ratio E/Uhs diminishes and they

are practically eliminated as E/Uhs increases slightly above l/2.

Data from various runs on two-dimensional test grids, such as that of

Figure 8.5 and of �4!, as well as two-dimensional grids of natural water

bodies, such as the Nassachusetts Bay  Fig. 9. 5 !, Plymouth-Duxbury Bay

and adjacent area �3!, Great Egg Harbor, N.J. etc., have been compiled

and plotted in Figure 8.6 ~ The meaning of the various symbols is the

same as in Figure 8. 3. Xn the test grids the flaw is uniform along the
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Figure 8.6 Comparison of Theoretical Bounds on the Time Step with 2-D Runs
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x-axis and the dispersion only lateral, in the y-direction. In the appli-

cation runs actual velocities, obtained from a compatible finite element

circulation model  86!, variable in space and time, are used. In view

of this variability, the point having the largest sum of 8 � + 1.22
Eht Uht
hs~ ' hs

should be examined. If there is a location where this sum is much

higher than over the rest of the domain, eg. caused by high velocity in a

narrow zone, it might not be crucial for the stability of the whole scheme.

Indeed, the point on the far right of Figure 8.6 is associated with such

locally high velocities. However, points closer to the theoretical boundary,

corresponding to high velocities over extended areas, indicate that the

solution blows up. It is significant that all runs within the theoretically

safe area do not present convergence difficulties. The boundaries can only

be considered to be approximate in this case, since they are derived for

one-dimensional conditions. Thus, good convergence may sometimes be

achieved outside these limits. Furthermore, accuracy of the solution is

nore difficult in the two-dimensional case and appreciable oscillations can

show up even when E/Uhs > 1/2. Indeed, some of the runs denoted by white

circles exhibit negatives close to IOX of the peak. It is very interesting

to note that there are two pairs of points hsing the same coordinates but

different behavior. This is solely due to different source distributions.

For example, both points  O.l7, l.ll! represent continuous releases at the

origin of the grid shown in Figure 8.5. In one case the source was

distributed over two elements, while in the other over eight elements.

The dramatic improvement in the numerical solution can be seen in Figure

8.7. Upstream oscillations are practically eliminated in the second case.

These observations are in agreement with the theoretical arguments of

Sec. 8.2.4. -223-
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convergence.

8.6 Stabilit of Two-La er Model

It was shown in Sec. 7.2 that the discretized equations take the form

�.3la,b! under certain conditions. Considering the homogeneous case,

their form is:

~ + Alcl + Klc + D Cl + E cl � C2! = 0  8. 85a!

MC2 + A2C2 + K2C2 + D2C2 + E C2 � C ! = 0  8.85b!

where the subscripts 1, 2 refer to the layer indices for an individual

element, the intefacial diffusion matrix is expressed by  Eq. �.26!!:
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In the above, the contribution of the decay term  kh,t/2! was of the

order of 0.01 or less and thus neglected. If it becomes significant, it

has, of course, to be taken into account by displacing inwards the limit

of the safe region.

The general conclusion from the experimental results is that the

theoretical bounds are very satisfactory for one-dimensional problems and

still reasonably valid in a two-dimensional domain with constant or

variable flow field. These bounds are appropriate not only for coastal

dispersion problems but also for other dispersion prob].ems. Condition

 8.80! has been successfully applied to groundwater problems �1! .

Unfortunately, both theoretical and numerical results indicate that

accuracy considerations significantly reduce the area of acceptability of

combinations  Uht/As, Eht/hs ! to a fraction of that required for iteration



2 1 1

1 2 1

1 1 2

e a'A

12
= a'M  8.86!

The two equations  8.85a,b! are integrated successively by using the

trapezoidal rule, as discussed in Sec. 7.3. That is,

[H+ 2  Kl+D1+Al+ E! ] C +1 - 2 E jCAt

[M- �  K +D +A +E! ] C + � EC
2 1 1 1 n 1n 2 -n2n

 8.87a!

[N + 2  K2 + D + A + E! ] C � � E C2 2 2 2 n+1 -2,n+1 2 -n+l-l,n+1

[M � �  K + D + A + E! ] C + � E C
2 -2 -2 -2 - n -2,n 2 -n-l,n

 8. 87b!

 8.88!X C = Q C
n+1 - -n

where

C
-l,n+1

C
2,n+1

C n+1
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Assuming for simplicity that the various coefficient matrices are constant

over the time step, the above equations can be rewritten in compact form:



X =

M+ 2  K2 + D2 + A2 + E!

M � 2  K2+ D2+ A2+ E!

Matrices X and A can be decomposed as follows:

 8.89a!

 8.89b!

where

M o

 8.90a!

o M

 8.90b!

A o

 8. 90c!

0

E

G =
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M+ 2  K + Dl+Al+ E!h.e

At� � E
2

+ � E
ht

2

X=B+ �  F +P + G!
2 -l -2

Q B � � � + F + G!
2 -l -2

Kl + Dl

K2+D

A2

� � E
2

 8.90d!



Natrix G is singular and therefore its eigenvalues are the same as those

of E. The latter, being composed of individual positive definite matrices

E, is itself positive definite. Furthermore, matrices B and Fl are alsoe

symmetric positive definite. Finally, if both advection matrices A and

A2 are skew-symmetric, which is usually the case  Sec. 8,3,1!, F will be

skew-symaetric, too.

Writing now, as in the one layer case

C = X ! , for all n,
-n

substituting in  8.88!, and premultiplying both sides by $, we obtain:
T

[B+ �  F +F +G � G!] <f>= f> [B- �  F +F +G-G!]ht T

 8.91!

According to previous considerations

$Bg=m! 0
T

4 Gg = c ! 0
T

$F Q=w+d!G
T

- -l-

F /=a +ia
T

«2» s ss

where the various numbers are, in general, different from those of  8.57!

and  S.S8!, and usually a = 0. Eq.  8.91! implies:
s
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m � �  v + d + c + a + ia !
At

2 s ss

m+ �  K+d+c+a +ia !
2 s ss

or,

[m- �  ~+d+a+ a!] +   � a !
At

2 s 2 ss
 8.92!

[m+ �  e+d+ a+a !] +   � a !
At

2 S 2 ss

This is analogous to the one-layer result  8.59! and indicates that the

interfacial exchange, expressed by e, which is posit'ive, is a stabilizing

mechanism for the two-layer system. When a ~ 0, the integration scheme
s

is unconditionally stable. Problems may arise in the unlikely case that

a acquires large negative values, as discussed in Sec. 8.3.1. However,
s

now a negative a has to be 1arger in magnitude than in the one layer
s

case in order to cause instability, because of the presence of v. The

stabilizing effect of the interfacial exchange  in the absence of net

entrainment! should have been expected on physical grounds: when the

concentration in one layer tends to increase, the diffusion of material

to the other layer through the interface is enhanced. Thus, this exchange

helps in "damping" high concentrations and exerts a restraint on perturba-

tions of the numerical solution tending to grow without bound, that

would eventually lead to instability. Nevertheless, in the present

two-layer idealization, the rate of exchange is usually small and its

effect cannot be too significant.

Despite the unconditional stability of the time integration scheme,

the iterative solution actually used imposes again a restriction on the
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time step. According to Sec. 7.3, the iteration proceeds successively to

the next layer, using the most recent values of concentration in the

previous one. That is,

 i+1! ~~  i! ae  i!
--l,n+1 2 -1 -1 -1 - n+l-l,n+1 2 n+1-2,n+1 1

 8.9 3a!

 i+1! h t  i! h,c  i+1!
2,n+1 2 2 -2 -2 n+1-2,n+1 2 -n+1 l,n+1 2

 8.93b!

where Q, Q are quantities known from the previous time step:
'vl 2

[M- �  K +D +A +E! ] C + � EC
ht Ar

-1 2 -1 -1 -1 - n -l,n 2 -n-2,n

Q2 = [M � 2  K2 + D2 + A2 + E! J C2 + 2 E C
he

 8.94!

where

 i+1!
-l,n+1

 i+1!
2, n+1

R =

2 -n+1

-230-

Eqs.  8.93a,b! can be together written as:

, i!
-l,n+1

c'"
-2, n+1



he 1+ ] + j +E! y] he

2 n+1

 K2 + D2 + A2 + E!

Convergence of the iteration  8.94! requires, in general:

ilR 'all <  8. 95!

The matrix R can be written as a product,

ht -l
� � N E

2 - -n+1

and its inverse is then:

I o

2 - -n+1

R

� 1
Since both R and Q involve triangular matrices, their eigenvalue norms

are conveniently expressed in terms of their diagonal elements. Thus, the

condition  8.95! is equivalent to:

IIM 2  K +D +A +E! I[ < 1

implying

At <
2

~  N ' K + D + A + E! II
 8. 96!
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or, in more conservative form

 8.9 7!II + II < Dill + II m 'A Il +

 8.98!

where the constant u' may be spatially and temporally variable and, of

course, depends on the stratification. The magnitude of the other terms

appearing in  8.97! has been examined in Sec. 8.4. Using those results,

the bound on the time step can be approximately written:

1

I3 i k u'
� � + 8 + � +�
2 Ds As~ 2 2

 8.99!1,2

Usually, as discussed in Chapter 4, the value of e' is expected to be of

-5
the order of 10 or smaller, and its contribution in limiting the time

step will therefore be usually marginal. As  8.99! shows, ht is basically

limited from the flow conditions in the individual layers, in particular

the fastest flowing layer.

These conclusions can be easily extended to multilayer models which

can be examined by a similar procedure. Condition  8.99!, applied for

the "worst" layer, should yield an approximate bound for the time step

-232-

Conditions  8.96! and  8.97! are entirely analogous to  8.61a! and  8.62!,

respectively, the only difference being in the introduction of the inter-

facial dif fusion terra, due to the exchange between the layers. From  8. 86!

it is evident that



applicable to the whole system. Exchange to two neighboring layers has

now to be considered and the coefficient of e' must be doubled. More

importantly, because the layers in such formulations are of ten separated

by only small densi.ty differences, the exchange through the interfaces

will not be necessarily small and its contribution in limiting the time

step may become significant.
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CHAPTER 9

VERIFICATION AND APPLICATIONS

Model verification is necessary in order to establish its

validity for describing the phenomena it has been developed for.

With respect to numerical models, the first step in the verification

process is to check whether the governing equations are being solved

correctly This is essentially an evaluation of the numerical

approximation and involves comparison of the numerical results to

analytical solutions. Clearly, the range of comparison is limited

by the availability of relevant analytical expressions; these

are restricted to problems involving simple geometry and flow

conditions.

To establish confidence in the predictive capability of a

model, further verification, consisting of comparisons to real-

world cases, is necessary. This step is extremely important in

providing an idea of the soundness of the conceptual idealization

of the physical processes and the degree of applicability of the

model under natural conditions. The agreement can never be

expected to be perfect, because of the high complexity of actual

hydrodynamic processes and the difficulties in obtaining reliable

field measurements in the coastal environment. The quality of

and. the uncertainty involved in input data should always be

considered when judging the model output. The compatibility of

available data to the model idealization is an issue that also
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deserves some thought. For example, if a model gives depth-

averaged concentrations, some averaging of data taken at different

points through the water column is necessary for the comparisons

to be consistent.

Even if the measurements were perfect, simplifications

introduced in model formulation can still prevent. good agreement.

With respect to the dispersion problem, the solution of the

convection-diffusion equation represents the ensemble average

concentration field over a small time  ht! and space  Ax, hy, hz!

interval  in the case of a layered structure, hz will be the total

layer depth!. However, at any point, there is always a natural

variability about this "average" value. This issue has been

addressed conceptually by Csanady �6!. According to his dis-

cussion, deviations from the average val~e by a factor of two or

three can well be due to these natural fluctuations and have

actually been observed in the central regions of plumes in the

atmosphere. A further complication arises at the fringes of the

plume, where there is a substantial probability that in a given

sample there will be zero concentration. The so-called "inter-

mittency factor" is introduced to describe this probability, but

its estimation appears to be hopeless.

In view of the above comments, model compart.sons to field

studies have to be evaluated not as an attempt to achieve a perfect

fit, but rather as an indication of the ability of the model to

reproduce certain key quantitative features of the data, such as
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the general direction of the plume, the peak values and the extent

of its boundaries  defined by concentrations significantly higher

than ambient!.

In this chapter, comparisons of the two-layer model to

analytical results obtained in Chapter 5 under idealized flow

conditions are presented first. The generally good agreement

proves the correctness of the model structure. Subsequently,

the application of the model to two large scale field experiments,

conducted in Massachusetts Bay under summer conditions, is

discussed.

9.1 1-D Verification Studies

The grid used for the one-dimensional comparisons is shown in

Figure 8.4. The first test is for the transient behavior of the

system after an instantaneous release simulated as of one timestep

duration. A unit load is distributed between the three nodes at

x=O and the results adjusted to yield values per unit width of

the channel. No longitudinal spreading of the source is necessary

in the l-D examples and consequently the simulation should represent

a point source quite closely. A unit depth is assumed for each

layer. Zero concentration is specified at the ends of the grid,

while zero flux is prescribed along the side boundaries. Table 9.1

contains a summary of the parameters considered. The value of the
-4 -1

interfacial mixing coefficient, 5 x 10 sec , implies that the

small time approximation of Sec. 5.1 is valid for a time period of
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about 100 sec. However, to avoid the plume reaching the downstream

end of the grid, the comparison is made at time t=l0 sec. As

Figure 9.1 shows, the agreement is extremely good. The only dis-

crepancy, at the upstream edge of the plume in the lower layer,

is due to the proximity of the grid boundary. The value of the

ratio E/Uhs  = 1.6! was chosen larger than 0.5 to ensure a smooth

numerical solution, as discussed in Section 8.2.4.

Table 9.1

Parameters Used in Verification Studies

It is seen from Figure 9.1 that for the value of o, used,

which is somewhat higher than values to be expected in nature, the

lower layer concentrations are two orders of magnitude smaller than

those of the top layer. This observation supports to some extent

the treatment of the interface as a barrier. However, it may not
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hold for longer time periods and is certainly not valid for

substances possessing vertical mobility. Irrespective of that,

it should be clear that a great advantage of the two-layer model

is the more detailed description of the velocity field. In this

particular counterflow case, a depth averaged treatment would imply

zero overall velocity and therefore predict a stationary peak of the

depth-averaged concentration distribution located at the origin

and having a magnitude approximately half the actual upper layer

peak. Thus, as shown in Figure 9.1, the solution for the depth-

averaged velocity field is far from the actual depth-averaged

concentration distribution of the two-layer system.

Next, the behavior of the model at steady state is examined.

A high decay coefficient is specified to speed up the arrival to

steady state and also to keep appreciable concentrations away from

the boundary. The parameters used  Table 9.1! are mostly the same as

in the transient test A higher interfacial mixing coefficient

was specified here so that the exchange between the layer would

be more pronounced. The comparison with the analytical expressions

of Section 5.2 is shown in Figure 9.2 and the agreement is, again,

quite good.

Runs with no interfacial mixing were also carried out for

testing purposes and the results for each layer were identical

to those of the one layer model, conducted earlier by Leimkuhler �3!.
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9.2 2-D Verification Studies

To examine the validity of the model for a two dimensional

domain, a verification was attempted for a continuous source in the

top layer, located at the origin of the grid shown in Figure 8.5.

In the numerical simulation the load is distributed over the eight

inner elements around the origin, to avoid problems associated

with the singularity of the point source solution, as discussed

in Section 8.2.4. Zero flux is specified along the x-axis, while

a zero concentration is prescribed in all other boundaries.

Again, a high decay rate is employed  Table 9.1! to contain the plume

within the grid boundaries.

The steady state analytical solution for a point

source, presented in Section 5.3, is compared to numerical results

at t=20 sec  which corresponds to steady state up to a distance

of about 1 meter from the origin! in Figures 9.3 and 9.4. Figure

9.3 shows the distribution along the x-axis and a fairly good

agreement is evident, except close to the origin and in particular

within the area of the numerical source. This, of course, is a

consequence of the spatial distribution of the source. The

numerical results for the top layer along the negative x-axis

are very close to zero, indicating that even for the unrealistically

high interfacial diffusion assumed in this case, the approximate

analytical solution is adequate. In Figure 9.4 the concentration

profiles at x=0.22 and at x=0.40 meters are presented. The validity

-241-



0

0 0 O
I

OI

O

-242-



0 0

O

o O
II

Q! 0

Cd

Q dl g 0
0 Cfl

0 4J
0 0

CCI 0

dl dI

0 0 C
Z

0 ~

0 ~

0 ~ 0
O

p O II

0
m

-243-



of the analytical solution  Equation 5.47! is restricted to values

of y < 0.13 and y < 0.18 m., respectively. Within these limits

the agreement with the numerical results is satisfactory.

9.3 A lication to the NGMES E eriment

9.3-1 The E eriment

Xn the context of the three year project NONES  New England

Offshore Mining Environmental Study! a major iield experiment was

carried out by NOAA in the Massachusetts Bay. The objective of

the project was to study the environmental effects of offshore

mining for sand and gravel in the coastal zone due mainly to fines

discharged back into the water body, and an extensive experimental

dredging operation was planned for the summer of 1974. A preliminary

experiment, in June 1973, was aimed at gaining field experience

for monitoring the actual mining operation and helping in testing

and improving relevant mathematical models. On the morning of

June ll, 1973, 2000 lbs of small glass beads and 1000 lbs of

fluorescent sphalerite �nS! particles  or 2.92 x 10 particles!15

were introduced near the water surface, about 8 miles east of Boston

Harbor. The settling property of the tracers was necessary for

simulating the actual dredge spoil and the use of two different

kinds of particles was planned in order to assess the performance

of a variety of measuring devices. The motion of the particles

was tracked for more than a week, by means of samples taken

throughout the water column and from the bottom. A number of

current meters were installed in several stations in the vicinity
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of the dump site to obtain current information, while some drogues

were deployed simultaneous with the tracers to provide easy

guidance with respect to sampling locations in the course of the

experiment. Details an the instrumentation, the experimental

procedures and data analysis can be found in  88!. Difficulties

with the instruments and experimental errors were inevitable in

such a large scale effort. Most unfortunately, the counting of

the glass bead particles was totally wrong and therefore those

data are useless �4!. Nevertheless, the sphalerite data are

believed to be of reasonable quality. They compare well with

results of the depth-integrated finite element dispersion model

which preceeded the present two-layer approach   65 !. Indeed,

the sphalerite data were used to some extent for "tuning" both

the one layer circulation and dispersion models, primarily with

respect to the ocean boundary condition and the dispersion

coefficient.

The time of the experiment was such that, although some

stratification existed, the thermocline was not as distinct

as it becomes later in the summer. In fact, neither the well-

mixed nor the two-layer assumption seems appropriate in this

case. Nevertheless, the application of the two-layer model is

of considerable interest for providing some idea about its real-

world capabilities and revealing the difficulties and the

sensitivity associated with numerical simulations of real problems.

The finite element grid is shown in Figure 9.5. This

has been used extensively in the past in conjunction with one-layer
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Figure 9.5 Massachusetts Bay Finite Element Grid and Location of the NONES
Experiment
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models. The dumping site is denoted by the shaded area and the

current meter stations are indicated by dots. Refinement of the

grid in the vicinity of the source was introduced to minimize the

numerical difficulties associated with large initial concentration

gradients.

9.3.2 The PLow Field

The hydrodynamic model developed by Wang and Connor  86! was

used to generate two-layer velocity inputs for the dispersion study.

Considerable preliminary effort was required since this was the

first application to a real coastal water body of variable bathy-

metry and boundary geometry. The model requires both layers to

extend over the whole domain and the depths at nodes near the Land

boundary had to be artificially increased to at least 15 meters

in order to avoid intersection of the interface with the bottom.

A major obstacle in obtaining realistic two-layer results

is associated with the proper position of the interface, in par-

ticular along the open boundary, where its spatial and temporal

variation must be specified. Information relevant to the thermo-

cline in the Bay is available in terms of a number af transects,

co~piled in   8!. Vertical temperature and salinity profiles at

certai,n locations are also available �2,9!. Data of both substantial

areal coverage and continuity in time, which are essential to

yield a detailed enough picture of the interfacial motion, are

lacking at the present time. Existing measurements show
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considerable variation of the thermocline position and a significant

effect of bottom topography. A major feature of the Bay

bathymetry is the presence of Stellwagen Bank in the central-

southern part of its entrance. Early experimental investigations

on a two-layer system �7! have showed that either an internal

hydraulic jump or hydraulic drop may be created on the lee of

an obstacle, depending on its height relative to the layer thick-

nesses and the incoming flow conditions. In most circulation runs

the interface was found to rise over the bank significantly higher

than its specified position at the boundary and then drop further

inside. A drop in the thermocline, possibly associated with

phenomena of frontal nature, has been evidenced in the past

west of the bank during periods of high inflow velocities �8!.

The behavior of the interface in the model may be considerably

affected by the specification of the boundary conditions right on

the bank, rather than in deep water outside. The effect of bottom

anomalies is known to be critical for the position of the interface

when wind provi.des the forcing mechanism, too   32 !. Specifically

for Nassachusetts Bay, the importance of the bottom topography.

in general, and Stellwagen Bank in particular, with respect

to wind driven circulation was discussed in   9 !.

A preliminary review of the available data for the Bay leads

to the conclusion that the thermocline  or, rather, pyclocline!

depth is typically about 8-l0 meters during the period of strongest

stratification. However, it tends to be shallower in early summer.
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For the application of the model a uniform interface depth of 8

meters at low water was selected as initial condition. Along the

ocean boundary in view of lack of data, the interface was assumed

to vary linearly. Two extreme cases were considered: first, the

interface moving at the same amplitude as the free surface and

second, the interface remaining fixed throughout the tidal cycle.

In the former case, the tide may be interpreted as coming through

the bottom layer, while in the latter, as coming through the top

layer.

A constant 10 knot west wind, typical of the period of the

experiment, was imposed. A simple sinusoidal tide was specified

along the ocean boundary, with amplitude linearly varying from 1.20

meters at the northern end  Cape Ann! to 1.10 meters at the

The amplitude was obtained fromsouthern end  Cape Cod! .

tide tables   80 !, as an average value over the duration of the

experiment. A 10 cm "tilt" was employed initially since it was

found optimum for a number of different applications of the one-

layer circulation and dispersion models   65, 63 !, yielding

results in reasonable agreement with current meters and tide gauge

data taken at various locations. However, because of changes in

bathymetry, the resulting southward water motion appeared too strong

and it was decided to experiment with a smaller  approximately

half! tidal tilt at the boundary. Primarily due to lack of data

on the behavior of the interface, the results of the circulation

model should be interpreted as qualitative rather than quantitative.
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At present, one can only study the sensitivity of the velocity

field  and untimately that of the dispersing plumes! to variations

in the imposed boundary conditions and other model parameters.

Studies of this nature should be valuable in establishing the

important quantities that will need ta be measured in the field..

The motion of the interface within the Bay depends, in

addition to the topography, on the density difference and the

layer thickness   6 !. Sensitivity of the results to these factors

was not examined further here, but the importance of the interfacial

friction factor c was established. This was conveniently set to

zero in both analytical studies and early applications af the

numerical madel  8~!, resulting in considerable oscillations of

the interface and significant velocity differences between the

layers, even several counterflow cases. A realistic value of the
-3

interfacial friction coefficient, of the order of 10  > !, moderates
-2

those features but a higher value, of l0, yields layer velocities

quite close to each other and allows little interfacial motion.

Conceivably, a very high interfacial friction would essentially

"tie" the two layers together, resulting in a flaw pattern similar

ta the one-layer case. Table 9.2 summarizes the various runs

carried out in conjunction with the application af the circulation

model.
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Table 9.2

Suszaary of Circulation Runs for the NOMES Application



The model was run until steady state was reached after 7-8

tidal cycles and the velocity field at that time is used

subsequently for the dispersion calculations. Typi,cal interfacial

motions over the tidal cycle, for run FTB, at selected grid points,

are shown in Figure 9.6. A comparison of simulated layer � average

veloci.ties at current meter station 5 are presented in Figure 9.7

and one of them is compared to the actual measurements in Figure 9.8.

The general features seem in reasonable agreement, in view of the

uncertainties involved in the application of the mode3., the use

of constant wind and tide and the non-existence of a strong

thermocline. The effect of interfacial friction in bringing

the layer velocities close together can. be clearly seen.

Variation of the specified interface motion at the boundary relative

to the surface is found to affect primarily the eastwest component

of the flow, i.e., that not associated with the net drift, as will

be discussed shortly. The effect of the way the tide is specified

to come into the bay becomes really minimal as the interfacial

friction increases and is generally significant only locally near

the boundary.

Typical circulation patterns for run FTB are shown in Figures

9.9 and 9.10, respectively. A quite strong outward flow is evident

at the southern end of the ocean boundary, a consequence of the

large tidal tilt and the wind on the one hand, and the existence of

a rather narrow and deep "channel" on the other. The top layer
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velocity is, in general, larger than the bottom. However, comparison

with similar one-layer circulation plots indicates that the

velocities in the two-layer system are too high, primarily near the

tip of Cape Cod and along the western land boundary. This is probably

due to the artificial deepening of the Bay in those areas, as men-
I

tioned earlier.

An important feature of the circulation pattern as a whole is

the trace of a water "particle". Particle paths can be easily

computed by interpolation in space and time between the layer-

average velocities given the grid points of the finite element

model. Some representative paths, for a period of 7 days,

originating near the dumping site, are presented in Figure 9.11.

All particles in the top layer exhibit a rapid southeasterly motion

in crossing the Bay. The one closest to land eventually slows down

as it enters Cape Cod Bay. The other two turn to the east, as

they approach the zone of high outwards velocity, and are rapidly

driven out of the domain. Thus, the eventual terminal position

appears to be quite sensitive to relatively small variation in the

starting positions, provided they lie in the area examined. By

contrast, the effect of the precise time of release within the

tidal cycle is found to be of minor importance. Two "particles"

were started from each location, one at low water and the other

at ebb tide. As seen in the figure, the paths of each pair are

essentially the same.
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Figure 9.9 Floe Field at Flood Tide for FTB Run
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Figure 9.l0 Flow Field at Ebb Tide for FTS Run

-258-



4
0

A I
Gi

Q

-259-



To compensate for the artificial deepening of the Bay and

the resulting high velocities along the western land boundary�

where the highest tracer concentrations are indicated by both

experimental and one-layer model results � a smaller tidal tilt

was tried  Run HTB!. Circulation plots for this case at flood

and ebb tide, shown in Figures 9.12 and. 9.13, exhibit smaller vel-

ocities both along the western bank and near the tip of Cape Cod.

Particle paths, initiated at the same positions as before, are seen

to move slower  Figure 9.14!, although in the same direction,

in general; in particular the net drift in the lower layer seems

to be almost half its previous magnitude.

With respect to the comparison of the various runs to actual

data in Station 5, the natural variability of the measurements is

such that no conclusion can be drawn as to which one yields better

agreement. Undoubtedly, an extensive undertaking is needed for a

conclusive verification of the circulation model, including some

carefully planned field measurements. The issue of circulation

veri.fication can no longer be pursued in the present: work.

Rather, two flaw fields, corresponding to Runs FTB and HTB, are

used as inputs to the dispersion model in an attempt to assess its

sensitivity, as will be seen in the following section.

9.3.3 Dis ersion Results

The experimental data were presented i.n   54 ! in terms af

lines of equal particle counts  particles/1t! at several depths.
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Figure 9.12 Flow Field at Flood Tide for HTS Run



Figure 9.13 Flow Field at Ebb Tide for HTB L'un
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These plots are shown here as Figures 9.15 through 9.17, representing

the results for 2, 3, and 7 days after the introduction of the

particles took place. During the early days the data were taken by

boat and therefore the area that could be covered is limited. By

the seventh day the particles had spread so much that boat sampling

would have been meaningless. Thus, Figure 9.17 shows surface

measurements, taken from a helicopter. A3.though monitoring of the

particles continued for a few more days, their concentrations had

dropped to ambient levels so that results after the seventh day are

not too reliable. The data show a general southeast drift of the

plume, with the peak values remaining rather close to the shoreline.

In the first days, higher concentrations are found near the surface.

Later, the particles move to lower levels as settling proceeds. The

shape of the plume, as can be judged from the limited available

measurements, is highly irregular and variable over the depth.

Further, it seems to have broken into two or three different parts

by the end of the experiment.

These details cannot be reproduced by deterministic modeling,

which yields continuous variation of concentrations. In the

numerical simulations the load was introduced at the four corners

of the shaded area of Figure 9.5 over one time step. This represents

an initial spreading of the source and underestimation of peaks should

be anticipated for short times after the injection. All the

material was considered to consist of a single representative grain
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size of 5 microns. According to Stoke's law the settling velocity

-5
of such a particle is 3.3 x 10 m/sec, assuming no interaction

 eg. flocculation, etc.! between the particles. This settling

rate over a layer of about 8 meters thickness is equivalent to a

-6 -1
decay rate of about 4 x 10 sec. . A constant interfacial mixing

-5
coefficient of 10 m/sec was used, corresponding to a  rather low!

Richardson number of the order of 10. Also, a constant isotropic

dispersion coefficient of 30 m /sec, found to yield good results2

in previous studies �5.63!,was employed. Velocity fields from

runs FTB and HTB were used as inputs to the dispersion model. The

highest velocities at the area around the location of the source,

where the grid is finest  hs - 2.8 km!, are about 10-15 cm/sec.

Employing these values, as well as those of the other parameters

defined above, condition  8.80! yields a bound on the time step of

about 2500 to 3000 sec. The actual time step chosen was 1500 sec,

for better accuracy in the representation of the velocity variabil-

ity.

Using velocity input corresponding to the large tidal tile

 FTB! proved to yield results extremely sensitive to the precise

tidal time of particle injection. While the actual dumping took

place around ebb tide, some time has to be allowed for the cloud

to reach a size comparable to that of the numerical source.

Figures 9.18 through 9.20 show simulation results  in particles/lt!

for a release at low water. Except for the exaggerated speed of
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motion southward and out of the domain, these are in reasonable

agreement with the field measurements and also the one-layer

results   6>!. However, slight variations in the time of release

drastically change the picture. In particular, when the injection

is made at ebb tide, the resulting cloud moves in the center of

the Bay and rapidly disappears into the ocean. This unnatural

sensitivity of the model can be explained based on the particle

paths shown in the previous section  Figure 9.11!, Apparently,

if the particles are introduced close to ebb tide, the bulk of

the plume gets carried enough eastward, due to the high velocities,

so that it starts following the course of the paths that lead

quickly out of the Bay.

Using the velocities obtained with the smaller tilt at the

boundary  HTB!, yields significantly different results.

Figures  9. 21! through  9. 23! show plots corresponding to a

release at low water. Comparing with analogous results associated

with the previous flow field, the most striking difference is that

now the plume reaches the boundary more to the north and its peak

never approaches Plymouth. However, this contradicts the field

data and consequently, at Least in that respect, the stronger

fLow field is to be preferred. Figures  9.24! through  9.26!

show simulation results for a release at ebb tide. Comparison with

the previous set of plots again indicates considerable sensitivity

of the plume motion to the time of introduction, but not as

significant as found with the FTB circulation field. This is
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certainly a factor in favor of the present velocity input.

The boundary condition used in all runs of the dispersion

model consisted of specifying zero concentration along the northern

part of the ocean boundary and zero gradient along the southern

part, where the velocity is predominantly outwards, as discussed

in Section 2.3. The early arrival of appreciable concentrations

at the boundary, due to the unrealistically strong flow field, may

lead to inaccuracies and therefore the results near the boundary

must be viewed as a crude approximation at best.

9.4 A lication to the MIT E eriment

9.4.1

In conjunction with recent studies made by the R.M. Parsons

Lab. of MIT �3 ! and sponsored by Boston Edison Co., of the

far field effects of the Pilgrim Nuclear Power Station  PNPS!,

a dispersion experiment was carried out in August 1975. The power

plant is located at Rocky Pt., south of Plymouth on the Massachusetts

coast  Figure 9.27! and the experiment was intended to be, to some

extent, site-specific in order to provide information relevant to

plant discharges. However, the experimental results should be of

more general value in assessing the circulation and dispersion

characteristics of the adjacent water body.

The timing of the experiment, in late August, was planned

so that the results could be used in connection with the two-layer

numerical models. Based on previous experience with dispersion
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Figure 9.27 Location of the NIT Experiment
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material, it was decided to use fluorescent sphalerite particles

as a tracer. On the morning of August 17, 1975, 500 pounds of

these particles were introduced gradually into the water over a

period of about one hour, around high tide. Their motion was

subsequently monitored for 5 days by boat and by helicopter.

Samples were taken from the surface as well as 5, 10, 15, 20 and

25 meters depth. In addition, temperature and conductivity profiles

over the depth were scheduled, but very limited data were obtained

due to instrument malfunction. Two current meter stations had been

installed prior to the experiment at locations shown in Figure

9.27 by dots. Details of the experimental procedures and data

analysis, which has been recently completed, are given in   63 !.

9.4.2 The Flow Field

Two sets of velocities obtained from the circulation model

and corresponding to large and small tidal tilt along the boundary

were used. Since the tide was slightly higher than in the NOMES

experiment, the specified amplitudes were 1.22 to 1.13 meters and

1.22 to 1.175 meters, respectively. A variable wind routine was

also implemented and actual time-varying wind data were used in

the computations. The remaining variables, such as the interfacial

friction and the depth of the interface, were assigned the same val-

ues as in the previous application. At the boundary, the

interface was given the same motion as the free surface, i.e.,

the tide is considered to come through the bottom layer.
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Comparison of the predicted currents, under the small tidal

tilt, to measurements at St. SE is shown in Figure 9.28. The

agreement is reasonable, especially for the lower layer, awhile

the predicted top-layer direction differs significantly at times

from the measured surface value, the latter being strongly dependent

on the wind.

9.4.3 Dis ersion Results

The experimental results were reduced to "layer-average"

concentrations. At each location, samples above and below the

thermocline were averaged together to yield a single representative

value for each layer. The resulting plots, in particles/1t, are

shown in Figures 9.29, 9.30 and 9. 31 corresponding to 1, 2 and 3

days after the dumping took place. During the fourth day no

measurements were taken, while the data of the fifth day are too

inconclusive � and generally low � to draw isoconcentration lines

with any confidence. By that time, the plume had spread con-

siderably to the east in comparison to earlier days, a result of

a change in wind to southwest, extending probably over a large

portion of Cape Cod Bay which could not be covered by the sampling

means available. The plots of the first three days show the

plume moving slowly to the southeast, approximately parallel to

the shore. Initially the top layer has higher concentrations, as

the particles were introduced a little below the surface, but

later higher values occur in the bottom layer due to settling.
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In the dispersion simulations the shaded triangle was loaded

over a period of three timesteps. The area of the triangle is

qui,te large in comparison to the actual source and as a consequence,

one should expect unrealistically large plume areas for short times.

In fact, the finite element grid is quite coarse in the vicinity

of PNPS, simply because it had not been designed to handle a

source in that area. A much finer grid has been employed earlier

in connection with the one-layer mode1s to study circulation and

dispersion problems in the Plymouth area, including the harbor,

and may be used in the future for the two-layer models as well.

At this time, the requirement that all depths be at least about 15

meters makes use of that grid meaningless.

The values of the dispersion coefficient and the interfacial

2
mixing rate were set, as in the previous application, at 30 m /sec

-5
and 10 m/sec, respectively. An average particle size of 7

microns was selected as representative, following the particle

distribution provided by the manufacturer. Consequently a

-5
settling velocity of 7.3 x 10 m/sec was used in the computations.

As in the previous application, various starting times of the simula-

tion were tried. The results for the velocity fi.eld obtained under

the large tidal tilt at the boundary showed again considerable

sensitivity to starting times. When the release was made close

to or before high water, the plume was seen to more rapidly south-

ward close to the shore as a narrow zone; for a release after high
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water the plume moved to the south more slowly and at the same

time extended to the east. Taking into account our initial

spreading of the source, this second starting time is more

reasonable. The model results for this case are shown in Figures

9.32, 9.33 and 9.34. In addition to reasonable agreement in the

location of the plume, good quantitative agreement of the peak

values is observed.

Using the velocity field obtained under smaller tidal tilt

at the boundary, hardly any southward movement of the plume center

to the south is found. As Figures 9.36, 9.36 and 9.37 show , the

plume is now more extended along the shore and appreciable

concentrations occur towards Plymouth Bay. The peak values appear

in satisfactory agreement with the data, although the dimensions

of the plume are clearly overestimated, due to the initial spatial

distribution of the source.

9.5 Discussion of the Results

The verification studies presented in the first part of this

chapter show that the numerical model is capable of describing

well the dispersion phenomenon in a two-layer system, as it is

intended to. The main difficulty in its application to real world

problems seems to be the lack of reliable velocity inputs. In

the particular cases studied in the Massachusetts Bay, the primary

obstacles are associated with the behavior of the interface at the

boundary and the use of distorted topography in shallow areas.
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Detailed measurements should resolve the former problem, however

an improved version of the circulation model, handling vanishing

layers, etc., is needed to overcome the latter. The great sen-

sitivity of the dispersion results to the velocity input, observed

in the previous sections, is a factor emphasizing the need for a

reliable velocity field.

In the case of Nassachusetts Bay, the large tidal tilt,

along with the deepening of nearshore areas, produced an exaggerated

southward drift parallel to the coast, a strong counterclockwise

gyre in the Cape Cod Bay and outward flow over the tip of the Cape.

Although all these features do exist in weaker form, as

evidenced from both measurements and one-layer model simulations,

the strong velocity field causes the dispersing particles to move

too fast in comparison to the actual data. It is worth noticing,

however, that the location of the plumes after several days is not

unreasonable and, in fact, better than that obtained under a smaller

tidal tilt. In that case the southward motion is less pronounced

and the plumes eventually end up more to the north than they should.

The small net motion of the plume centers in the NIT experiment,

both in nature and in simulations, is explained by the presence at

the area of the source, of a "separation" region with very weak

tidal velocities, as discussed in   63 ! and seen in the velocity

plots of Section 9.3.3.

-295-



Another important feature of the application runs was the

high sensitivity of the results to the precise tidal time of

introduction of the material. This should be at least partly due

to the unrealistically high velocities used, causing large tidal

excursion of the particle center of mass. It is conceivable that

the motion of an effluent in nature is indeed to somm: extent

dependent on the time of infection; and this notion is being used

in planning the discharges of sewage outfalls and other pollutants

into the coastal waters. In view of the above and the spatial

distribution of the source for purposes of the computation, it

seems important that a preliminary calculation is made to evaluate

the time necessary for a source of the actual size to reach its

numerical size.

The value of the dispersion coefficient used in the applica-

tions gave reasonable results with respect to the quantitative

features of the distributions, taking into account the initial

source spreading. Nevertheless, it is low with respect to the

criteria discussed in Section 8.2.4. As a consequence, appreciable

negative values do appear in the fringes of the pluae,and further

spatial oscillations which die off rapidly. This is certainly an

undesirable effect and it could be remedied by arbitrarily increasing

the dispersion coefficient in cases where the solution is not sen-

sitive to its value  see Chap. 6!. In problems where this is not

the case, such as the almost instantaneous sources used in the
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applications, attention should be confined to the central part

of the plume. This is not affected by the presence of negatives

and should still contain quite good results.

Finally, some comments on the role of interfacial transport

are appropriate. En the verification studies the interface was seen

to represent a barrier difficult to penetrate even with un-

realistically high values of the interfacial mixing rate. The

picture was different in the applications because of the presence

of settling on the one hand and the large time scale on the other.

The velocities in the two layers were not much different and

consequently the location of the plumes in the two layers was

similar. However, the progressive relative increase of the lower

layer concentrations with respect to those of the top was evident

in all runs. Thus, in the case of settling particles, the two-

layer approach is useful in providing more detail about the ver-

tical distribution of the material as time proceeds.
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CHAPTER lO

CONCLUSIONS

The objective of this study was to investigate the problem

of dispersion in coastal or inland water bodies under conditions

of strong stratification. The two-layer idealization was adopted

as a useful extreme case and, at the same time, the easiest to

handle mathematically Primary emphasis was placed first on

analyzing the physical mechanisms associated with the dispersion

phenomenon in such a system and second on establishing the

numerical requirements for its effective simulation by the finite

element method.

Rational quantitative expressions for the dispersion

coefficients and the interfacial transport in terms of the mean

flow characteristics, which are necessary for engineering applica-

tions, were proposed. Moreover, the sensitivity of the results

to variations in these and other parameters was evaluated mainly

through examination of analytical solutions derived under simple

flow conditions. With respect to the numerical aspects of the

problem, use of the trapezoidal integration rule yielded the

initial value problem unconditionally stable for an arbitrary grid.

The limitation imposed by the iteration procedure, employed for

economical handling of time variability, was investigated

theoretically and a simple quantitative expression for selecting

the time step was developed and verified by numerical experimentation.
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The accuracy characteristics of the scheme, particularly in

connection with the finite element spatial discretization, were

also analyzed and quantified.

Verification studies showed that the numerical model

adequately predicts the phenomena it is intended to. Its po-

tential and limitations relative to real world problems was

evaluated through applications to field experiments in the

Massachusetts Bay. The ability of the two-layer treatment to

handle transport between the layers is important, whether or not

the constituent of interest has some vertical mobility, in

providing a refined picture of its distribution over the depth.

A further advantage of the two-layer formulation evident from

both ideal and real applications, lies in the more detailed

description of the velocity field. However, the sensitivity of

the results to variations in the flow field points out the

necessity for using realistic current input.

In order to improve the applicability of the model to

natural water bodies some extensions, such as treatment of

vanishing bottom layers, will have to be incorporated. But more

importantly, a reliable circulation field is essential. This

will require extensive field monitoring programs for obtaining

information primarily on the behavior of the interface along the

open boundary of the domain under consideration. Development of

numerical techniques has outgrown our present ability to define

realistic inputs and also our basic knowledge of turbulent mixing
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processes in stratified environments. Unless the physical processes

are fully understood, their proper modeling cannot be complete.

Therefore, more fundamental research is needed in this area.

In view of the above, implementation of more elaborate and

expensive multi-layer or three-dimensional models does not seem

warranted at this time. It is believed that the present two-layer

model, providing an extreme-case picture of the response of the

physical system under summer conditions, can be a useful tool in

coastal dispersion studies. Furthermore, the discussion of the

basic physical processes and the requirements of the finite

element solution should be valuable in multi-layer extensions,

as well as other related problems.
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